Journal of Guangdong University of Technology ›› 2021, Vol. 38 ›› Issue (06): 35-46.doi: 10.12052/gdutxb.210107

Previous Articles     Next Articles

A Novel Watchdog Fault-Detection Protocol for Compute First Networking

Liang Hong1, Feng Li1, Xu Fang-xin1, Li Guang-cheng1, Zhou Guo-xu2,3   

  1. 1. Faculty of Information Technology, Macau University of Science and Technology, Macao 999078;
    2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
    3. Guangdong-Hong Kong-Macao Joint Laboratory for Smart Discrete Manufacturing, Guangzhou 510006, China
  • Received:2021-07-12 Online:2021-11-10 Published:2021-11-09

Abstract: Compute first networking (CFN) is a latest distributed framework that intelligently allocates computing resources for edge computing according to computing load and network status. It requires real-time visibility of available statuses of local or remote computing resources. To the best of our knowledge, thisis the first endeavor to propose a centralized fault-detection protocol called CFN-Watchdog to well meet this CFN requirement and timely recycle resources occupied by faults. The impact of various parameters (e.g., detection thresholds, task processing time, and network delay) on the Watchdog performance is then theoretically analyzed. Extensive simulations verify the effectiveness of our proposed protocol and the accuracy of our theoretical model. This study is very helpful to optimize parameter configurations and better design fault-detection protocols for edge computing.

Key words: edge computing, compute first networking, watchdog, fault detection

CLC Number: 

  • TP399
[1] LI Y. Framework of compute first networking (CFN) draft-li-rtgwg-cfn-framework-00[EB/OL]. (2019-11-04) [2021-07-15].https://datatracker.ietf.org/doc/html/draft-li-rtgwg-cfn-framework-00.
[2] SONG Y, YAU S S, YU R, et al. An approach to QoS-based task distribution in edge computing networks for IoT applications[C]//2017 IEEE International Conference on Edge Computing (EDGE). Honolulu, HI: IEEE, 2017: 32-39.
[3] VARGHESE B, WANG N, BARBHUIYA S, et al. Nikolopoulos. challenges and opportunities in edge computing[C]//2016 IEEE International Conference on Smart Cloud (SmartCloud). New York: IEEE, 2016: 20-26.
[4] KATZ D, WARD D. Bidirectional forwarding detection (BFD)[EB/OL]. (2010-06) [2021-07-15]. https://datatracker.ietf.org/doc/html/rfc5880.
[5] ZHU H, CHEN H. Adaptive failure detection via heartbeat under Hadoop[C]//2011 IEEE Asia-Pacific Services Computing Conference. Jeju: IEEE, 2011: 231-238.
[6] WIKIPEDIA. Watchdog timer[EB/OL]. (2021-07-15) [2021-07-31]. https://en.wikipedia.org/wiki/Watchdog_timer.
[7] DEERING S. ICMP router discovery messages[EB/OL]. (1991-09) [2021-07-15]. https://datatracker.ietf.org/doc/html/rfc1256.
[8] SHALUNOV S, TEITELBAUM B, KARP A, et al. A one-way active measurement protocol (OWAMP) [EB/OL]. (2006-09) [2021-07-15]. https://datatracker.ietf.org/doc/html/rfc4656.
[9] SRIDHAR K, OOGHE S, VISSERS M P J, et al. System and method for monitoring end nodes using ethernet connectivity fault management (cfm) in an access network: US 7, 688, 742 B2 [P]. 2010-03-30.
[10] KRÓL M, MASTORAKIS S, ORAN D, KUTSCHER D. Compute first networking: Distributed computing meets icn[C]//Proceedings of the 6th ACM Conference on Information-Centric Networking. [S.l.]: ACM, 2019: 67-77.
[11] ARMBRUST M, FOX A, GRIFFITH R, et al. A view of cloud computing [J]. Communications of the ACM, 2010, 53(4): 50-58.
[12] APACHE. Apache Storm[EB/OL]. (2020-06-30) [2021-07-15]. https://storm.apache.org/index.html.
[13] SOUALHIA M, KHOMH F, TAHAR S. ATLAS: an adaptive failure-aware scheduler for Hadoop[C]//2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC). Nanjing: IEEE, 2015: 1-8.
[14] YILDIZ O, IBRAHIM S, PHUONG T A, et al. Chronos: failure-aware scheduling in shared hadoop clusters[C]//2015 IEEE International Conference on Big Data (Big Data). [S.l.]: [s.n.], 2015: 313-318.
[15] SMARA M, ALIOUAT M, PATHAN A S, et al. Acceptance test for fault detection in component-based cloud computing and systems [J]. Future Generation Computer Systems., 2017, 70: 74-93.
[16] SCIRÈA, TROPEANO F A. Anagnostopoulos, and I. Chatzigiannakis. Fog-computing-based heartbeat detection and arrhythmia classification using machine learning [J]. Algorithms, 2019, 12(2): 32.
[17] HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing—A key technology towards 5G [J]. ETSI White Paper, 2015, 11(11): 1-6.
[18] SUN X, ANSARI N. EdgeIoT: Mobile edge computing for the Internet of Things [J]. IEEE Communications Magazine, 2016, 54(12): 22-29.
[19] ABDELALIM K, REDIETEAB G, ROBLOT S D, et al. Adaptive negotiation for block acknowledgment session management[C]//2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Kuala Lumpur: IEEE, 2019: 1-5.
[20] PETERSON L L, DAVIE B S. Computer networks: a systems approach[M]. Amsterdam: Elsevier, 2007.
[1] Zhu Qing-hua, Lu An-bang, Zhou Jian-tie, Hou Yan. An Improved Multi-population Evolutionary Algorithm for Task Scheduling in a Mobile Edge Computing Environment [J]. Journal of Guangdong University of Technology, 2022, 39(04): 9-16.
[2] Wang Feng, Li Yu-long, Lin Zhi-fei, Cui Miao, Zhang Guang-chi. An Online Resource Allocation Design for Computation Capacity Maximization in Energy Harvesting Mobile Edge Computing Systems [J]. Journal of Guangdong University of Technology, 2022, 39(04): 17-23.
[3] PAN Yong-xiong. Using LPC900/LPC76X Family as 8XC5X CPU Hardware Watchdog [J]. Journal of Guangdong University of Technology, 2005, 22(2): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!