Journal of Guangdong University of Technology ›› 2023, Vol. 40 ›› Issue (05): 73-80.doi: 10.12052/gdutxb.220150

• Comprehensive Studies • Previous Articles    

Optimized Design for Multiuser Cache-enabled Mobile Edge Computing

Liang Jing-xuan, Wang Feng   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-09-30 Published:2023-09-26

Abstract: The energy-efficient caching strategy and computation offloading design of mobile edge computing (MEC) faces the double randomness challenges, which require to adapt to the time-varying wireless channel state and the dynamic task arrivals. This paper investigates a cache-enabled mobile edge computing system with dynamic tasks arriving at multiple wireless devices. By minimizing the system weighted sum energy over multiple time slots, we optimize the AP's task caching decision and MEC execution, the wireless devices’ local computing and tasks offloading under the caching capacity and computation causality, and the computation deadline constraints. The branch-and-bound (BnB) method is first presented to obtain the globally optimal solution to define the lower bound for practical schemes. Then, a relaxation-based scheme is proposed to efficiently achieve a near-optimal solution. Numerical results show that the proposed relaxation-based scheme achieves a closer performance to the optimal BnB scheme when compared to the benchmark schemes.

Key words: mobile edge computing, computation offloading, tasks caching, convex relaxation, Branch-and-Bound method

CLC Number: 

  • F224.32
[1] MAO Y, YOU C, ZHANG J, et al. A survey on mobile edge computing: the communication perspective [J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[2] ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762.
[3] WANG X, LEUNG V C M, NIYATO D, et al. Convergence of edge computing and deep learning: a comprehensive survey [J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 689-904.
[4] WANG F, LAU V K N. Multi-level over-the-air aggregation of mobile edge computing over D2D wireless networks [J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8337-8353.
[5] WANG F, XU J, DING Z. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems [J]. IEEE Transactions on Communications, 2019, 67(3): 2450-2463.
[6] WANG F, XU J, CUI S. Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems [J]. IEEE Transaction on Wireless Communications, 2020, 19(4): 2443-2459.
[7] WU B, CHEN T, NI W, et al. Multi-agent multi-armed bandit learning for online management of edge-assisted computing [J]. IEEE Transactions on Communications, 2021, 69(12): 8188-8199.
[8] YU N, XIE Q, WANG Q, et al. Collaborative service placement for mobile edge computing applications[C]// 2018 IEEE Global Communications Conference. Abu Dhabi: IEEE, 2018.
[9] POULARAKIS K, LLORCA J, TULINO A M, et al. Service placement and request routing in MEC networks with storage, computation, and communication constraints [J]. IEEE/ACM Transactions on Networking, 2020, 28(3): 1047-1060.
[10] XU X, LIU X, XU Z, et al. Trust-oriented IoT service placement for smart cities in edge computing [J]. IEEE Internet of Things Journal, 2020, 7(5): 4084-4091.
[11] BI S, HUANG L, ZHANG Y A. Joint optimization of service caching placement and computation offloading in mobile edge computing systems [J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4947-4963.
[12] GUO Y, YANG Q, YU F R, et al. Cache-enabled adaptive video streaming over vehicular networks [J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5445-5459.
[13] YAN J, BI S, DUAN L, et al. Pricing-driven service caching and task offloading in mobile edge computing [J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4495-4512.
[14] WANG C, LIANG C, YU F R, et al. Computation offloading and resource allocation in wireless cellular networks with mobile edge computing [J]. IEEE Transactions on Wireless Communications, 2017, 16(8): 4924-4938.
[15] CHEN L, XU J, REN S, et al. Spatio-temporal edge service placement: a bandit learning approach [J]. IEEE Transactions on Wireless Communications, 2019, 17(12): 8388-8401.
[16] HE S, LYU X, NI W, et al. Virtual service placement for edge computing under finite memory and bandwidth [J]. IEEE Transactions on Communications, 2020, 68(12): 7702-7718.
[17] XU J, CHEN L, ZHOU P. Joint service caching and task offloading for mobile edge computing in dense networks[C]//IEEE INFOCOM 2018 – IEEE Conference on Computer Communications. Honolulu: IEEE, 2018.
[18] CHEN L, SHEN C, ZHOU P, et al. Collaborative service placement for edge computing in dense small cell networks [J]. IEEE Transactions on Mobile Computing, 2021, 20(2): 377-390.
[19] 王丰, 李宇龙, 林志飞, 等. 基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置[J]. 广东工业大学学报, 2022, 39(4): 17-23.
WANG F, LI Y L, LIN Z F, et al. An online resource allocation design for computation capacity maximization in energy harvesting mobile edge computing systems [J]. Journal of Guangdong University of Technology, 2022, 39(4): 17-23.
[20] BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
[1] Zhu Qing-hua, Lu An-bang, Zhou Jian-tie, Hou Yan. An Improved Multi-population Evolutionary Algorithm for Task Scheduling in a Mobile Edge Computing Environment [J]. Journal of Guangdong University of Technology, 2022, 39(04): 9-16.
[2] Wang Feng, Li Yu-long, Lin Zhi-fei, Cui Miao, Zhang Guang-chi. An Online Resource Allocation Design for Computation Capacity Maximization in Energy Harvesting Mobile Edge Computing Systems [J]. Journal of Guangdong University of Technology, 2022, 39(04): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!