Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (01): 34-40.doi: 10.12052/gdutxb.230007
• Smart Medical • Previous Articles Next Articles
Chen Rui1, Cai Nian1, Luo Zhi-hao1, Liu Xuan2,3, Li Jian2,3
CLC Number:
[1] ZHOU X, LI C, RAHAMAN M M, et al. A comprehensive review for breast histopathology image analysis using classical and deep neural networks [J]. IEEE Access, 2020, 8: 90931-90956. [2] ARNOLD M, MORGAN E, RUMGAY H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040 [J]. The Breast, 2022, 66: 15-23. [3] LOH S Y, YIP C H. Breast cancer as a chronic illness: implications for rehabilitation and medical education [J]. Journal of Health and Translational Medicine, 2006, 9(2): 3-11. [4] GEORGE B, SEALS S, ABAN I. Survival analysis and regression models [J]. Journal of Nuclear Cardiology, 2014, 21(4): 686-694. [5] GANGGAYAH M D, TAIB N A, HAR Y C, et al. Predicting factors for survival of breast cancer patients using machine learning techniques [J]. BMC Medical Informatics and Decision Making, 2019, 19(1): 1-17. [6] SCHOBER P, VETTER T R. Survival analysis and interpretation of time-to-event data: the tortoise and the hare [J]. Anesthesia and Analgesia, 2018, 127(3): 792. [7] KATZMAN J L, SHAHAM U, CLONINGER A, et al. DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network [J]. BMC Medical Research Methodology, 2018, 18(1): 1-12. [8] LEE C, YOON J, VAN DER SCHAAR M. Dynamic-deephit: a deep learning approach for dynamic survival analysis with competing risks based on longitudinal data [J]. IEEE Transactions on Biomedical Engineering, 2019, 67(1): 122-133. [9] TANG W, MA J, MEI Q, et al. SODEN: a scalable continuous-time survival model through ordinary differential equation networks[J]. J Mach Learn Res, 2022, 23: 34: 1-34: 29. [10] YU C N, GREINER R, LIN H C, et al. Learning patient-specific cancer survival distributions as a sequence of dependent regressors [J]. Advances in Neural Information Processing Systems, 2011, 24: 1845-1853. [11] FOTSO S. Deep neural networks for survival analysis based on a multi-task framework[EB/OL]. arXiv: 1801.05512(2018-01-17) [2023-01-09]. https://doi.org/10.48550/arXiv.1801.05512. [12] HU S, FRIDGEIRSSON E, VAN WINGEN G, et al. Transformer-based deep survival analysis[C]//Survival Prediction-Algorithms, Challenges and Applications. New York: PMLR, 2021: 132-148. [13] 王慧恒, 蔡念, 陈睿, 等. 面向癌症个体生存分析的多任务带状回归模型[J]. 计算机工程与应用, 2023, 59(10): 299-305. WANG H H, CAI N, CHEN R, et al. Multi-task banded regression model for individual cancer survival analysis [J]. Computer Engineering and Applications, 2023, 59(10): 299-305. [14] MEDSKER L R, JAIN L C. Recurrent neural networks [J]. Design and Applications, 2001, 5: 64-67. [15] WU Y, HALABI S. Interval censoring[M]. Boca Raton: Chapman and Hall/CRC, 2019: 493-508. [16] BUHLMANN H, GISLER A. Credibility in the regression case revisited (A late tribute to Charles A. Hachemeister) [J]. ASTIN Bulletin: The Journal of the IAA, 1997, 27(1): 83-98. [17] YE K, LIM L H. Every matrix is a product of toeplitz matrices [J]. Foundations of Compu-tational Mathematics, 2016, 16(3): 577-598. [18] CURTIS C, SHAH S P, CHIN S F, et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups [J]. Nature, 2012, 486(7403): 346-352. [19] SCHUMACHER M, BASTERT G, BOJAR H, et al. Randomized 2×2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients [J]. Journal of Clinical Oncology, 1994, 12(10): 2086-2093. [20] ANTOLINI L, BORACCHI P, BIGANZOLI E. A time-dependent discrimination index for survival data [J]. Statistics in Medicine, 2005, 24(24): 3927-3944. [21] KVAMME H, BORGAN Ø, SCHEEL I. Time-to-event prediction with neural networks and Cox regression[EB/OL]. arXiv: 1907.00825 (2019-09-13) [2023-01-09]. https://doi.org/10.48550/arXiv.1907.00825. |
[1] | Wu Jia-hu, Xiong Hua, Zong Rui, Zhao Yao, Zhou Xian-zhong. Target Turning Maneuver Type Recognition Based on Recurrent Neural Networks [J]. Journal of Guangdong University of Technology, 2020, 37(02): 67-73. |
|