Journal of Guangdong University of Technology ›› 2024, Vol. 41 ›› Issue (02): 23-36.doi: 10.12052/gdutxb.230128
• Civil Engineering • Previous Articles
Feng De-luan, Li Sen-yu, Liang Shi-hua
CLC Number:
[1] CUI X, ZHANG N, ZHANG J, et al. In situ tests simulating traffic-load-induced settlement of alluvial silt subsoil [J]. Soil Dynamics and Earthquake Engineering, 2014, 58: 10-20. [2] 杜修力, 路德春. 土动力学与岩土地震工程研究进展[J]. 岩土力学, 2011, 32(S2): 10-20. DU X L, LU D C. Advances in soil dynamics and geotechnical earthquake engineering [J]. Rock and Soil Mechanics, 2011, 32(S2): 10-20. [3] KUMAR S S, KRISHNA A M, DEY A. Parameters influencing dynamic soil properties: a review treatise[C]//National Conference on Recent Advances in Civil Engineering. Bhiwani: [s. n. ], 2013: 1-10. [4] FENG D L, WANG Y X, LIANG S H. A mechanism-based shear strength theoretical model for fiber-reinforced cemented soil [J]. Journal of Engineering Mechanics, 2023, 149(2): 04022108. [5] CHEN M, SHEN S L, ARULRAJAH A, et al. Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay [J]. Geotextiles and Geomembranes, 2015, 43(6): 515-523. [6] LIANG S H, WANG Y H, FENG D L. Experimental study on strength and dry-wet cycle characteristics of South China coastal soft soil solidified by cement collaborating sand particles [J]. Applied Sciences, 2023, 13(15): 8844. [7] REN Y, YANG Q, WANG Y, et al. Experimental study on the undrained shear strength of deep-sea soft soil using improved T-bar penetrometer [J]. Marine Georesources & Geotechnology, 2020, 38(10): 1199-1208. [8] MI D, LUO J, LIU X, et al. Origin distribution and geotechnical characters of marine soft clay in Guangxi coastal highway [J]. Journal of Coastal Research, 2019, 94(SI): 269-274. [9] 郝艳茹, 王鹏, 张明珠, 等. 广花盆地地下水化学特征及其演化分析[J]. 生态环境学报, 2020, 29(2): 337-344. HAO Y R, WANG P, ZHANG M Z, et al. Hydrochemical characteristic and its driving force of groundwater in the covered Karst in Pearl River basin [J]. Ecology and Environment, 2020, 29(2): 337-344. [10] 宇珂, 王栋, 黄志滨, 等. 水泥搅拌桩在滨海软土地基加固中的应用分析[J]. 路基工程, 2021(1): 174-178. YU K, WANG D, HUANG Z B, et al. Application analysis of cement mixing pile in reinforcement of coastal soft soil foundation [J]. Subgrade Engineering, 2021(1): 174-178. [11] WANG A, ZHANG D, DENG Y. Lateral response of single piles in cement-improved soil: numerical and theoretical investigation [J]. Computers and Geotechnics, 2018, 102: 164-178. [12] CHEN H, WANG Q. The behaviour of organic matter in the process of soft soil stabilization using cement [J]. Bulletin of Engineering Geology and the Environment, 2006, 65: 445-448. [13] 梁仕华, 周锦程, 罗祺, 等. 有机质对水泥固化淤泥土的力学特性影响试验研究[J]. 广东工业大学学报, 2019, 36(6): 86-91. LIANG S H, ZHOU J C, LUO Q, et al. An experimental research on the effect of organic matter on mechanical properties of cementing solidified silt [J]. Journal of Guangdong University of Technology, 2019, 36(6): 86-91. [14] TREMBLAY H, DUCHESNE J, LOCAT J, et al. Influence of the nature of organic compounds on fine soil stabilization with cement [J]. Canadian Geotechnical Journal, 2002, 39(3): 535-546. [15] HELSON O, ESLAMI J, BEAUCOUR A L, et al. Durability of soil mix material subjected to wetting/drying cycles and external sulfate attacks [J]. Construction and Building Materials, 2018, 192: 416-428. [16] CHEN S, CHEN F, CHEN W, et al. A study on mechanical properties of modified soil-cement mixed with ferronickel slag powder under dry-wet cycles in marine environments [J]. Journal of Marine Science and Engineering, 2023, 11(9): 1684. [17] 涂义亮, 刘新荣, 钟祖良, 等. 干湿循环下粉质黏土强度及变形特性试验研究[J]. 岩土力学, 2017, 38(12): 3581-3589. TU Y L, LIU X R, ZHONG Z L, et al. Experimental study on strength and deformation characteristics of siltyclay during wetting-drying cycles [J]. Rock and Soil Mechanics, 2017, 38(12): 3581-3589. [18] LOMBARDI D, BHATTACHARYA S, WOOD D M. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil [J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165-180. [19] TI K S, HUAT B B K, NOORZAEI J, et al. A review of basic soil constitutive models for geotechnical application [J]. Electronic Journal of Geotechnical Engineering, 2009, 14: 1-18. [20] ELIA G, ROUAINIA M. Advanced dynamic nonlinear schemes for geotechnical earthquake engineering applications: a review of critical aspects [J]. Geotechnical and Geological Engineering, 2022, 40(7): 3379-3392. [21] SITHARAM T G, VIPIN K S, JAMES N. Recent advances in soil dynamics relevant to geotechnical earthquake engineering[J]. Advances in Indian Earthquake Engineering and Seismology, 2018: 203-228. [22] PRASAD B B. Advanced soil dynamics and earthquake engineering[M]. Delhi: PHI Learning Pvt. Ltd. , 2011. [23] 赵凯月, 张鹏, 孔祥明, 等. 硅酸盐水泥水化动力学模型与试验方法研究进展[J]. 硅酸盐学报, 2022, 50(6): 1728-1761. ZHAO K Y, ZHANG P, KONG X M, et al. Recent progress on portland cement hydration kinetic models and experimental methods [J]. Journal of The Chinese Ceramic Society, 2022, 50(6): 1728-1761. [24] TSAI P H, NI S H. A study on dynamic properties of cement-stabilized soils [J]. Advanced Materials Research, 2011, 243: 2050-2054. [25] GERMOSO C, DUVAL J L, CHINESTA F. Harmonic-modal hybrid reduced order model for the efficient integration of non-linear soil dynamics [J]. Applied Sciences, 2020, 10(19): 6778. [26] DU J, LIU B, WANG Z, et al. Dynamic behavior of cement-stabilized organic-matter-disseminated sand under cyclic triaxial condition [J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106777. [27] LANG L, LI F, CHEN B. Small-strain dynamic properties of silty clay stabilized by cement and fly ash [J]. Construction and Building Materials, 2020, 237: 117646. [28] MOSES G G, RAO S N, RAO P N. Undrained strength behaviour of a cemented marine clay under monotonic and cyclic loading [J]. Ocean Engineering, 2003, 30(14): 1765-1789. [29] YANG C, CUI Y J, PEREIRA J M, et al. A constitutive model for unsaturated cemented soils under cyclic loading [J]. Computers and Geotechnics, 2008, 35(6): 853-859. [30] CHEN Q, YAN G, ZHUANG X, et al. Dynamic characteristics and microstructural study of nano calcium carbonate modified cemented soil under different salt water solutions [J]. Transportation Geotechnics, 2022, 32: 100700. [31] CHEN Q S, YU R H, TAO G L, et al. Microstructure, strength and durability of nano-cemented soils under different seawater conditions: laboratory study [J]. Acta Geotechnica, 2023, 18(3): 1607-1627. [32] DU J, ZHOU A, LIN X, et al. Revealing expansion mechanism of cement-stabilized expansive soil with different interlayer cations through molecular dynamics simulations [J]. The Journal of Physical Chemistry C, 2020, 124(27): 14672-14684. [33] SAADE C, LI Z, ESCOFFIER S, et al. Centrifuge and numerical modeling of the behavior of homogeneous embankment on liquefiable soil subjected to dynamic excitation [J]. Soil Dynamics and Earthquake Engineering, 2023, 172: 107999. [34] 徐烨. 水泥土桩复合地基地震效应分析[D]. 南京: 南京工业大学, 2005. [35] SANGREY D A, HENKEL D J, ESRIG M I. The effective stress response of a saturated clay soil to repeated loading [J]. Canadian Geotechnical Journal, 1969, 6(3): 241-252. [36] 侯永峰, 耿化军. 循环荷载作用下水泥复合土孔压性状试验研究[J]. 工业建筑, 2002, 39(9): 37-40. HOU Y F, GENG H J. Testing study on the pore pressure of composite soil under cyclic loading [J]. Industrial Construction, 2002, 39(9): 37-40. [37] 侯永峰, 张航, 周建, 等. 循环荷载作用下水泥复合土变形性状试验研究[J]. 岩土工程学报, 2001(3): 288-291. HOU Y F, ZHANG H, ZHOU J, et al. Study on the strain of composite cement soil under cycic loading [J]. Chinese Journal of Geotechnical Engineering, 2001(3): 288-291. [38] LIU F, ZHU K, HU X, et al. Experimental simple shear study of composite soil with cemented soil core [J]. Marine Georesources & Geotechnology, 2019, 37(8): 960-971. [39] 杨军, 刘飞禹, 朱凯. 纤维加筋水泥土的静动力剪切特性研究[J]. 地下空间与工程学报, 2021, 17(S2): 563-569. YANG J, LIU F Y, ZHU K. Research on static and dynamic shear strength properties of fiber reinforced cement soil [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 563-569. [40] DU Y, DAI M, WANG C, et al. Cyclic shear characteristics of marine cement soil under stress path with bidirectional shear stress [J]. Marine Georesources & Geotechnology, 2021, 39(10): 1177-1191. [41] LI J, CUI J, SHAN Y, et al. Dynamic shear modulus and damping ratio of sand-rubber mixtures under large strain range [J]. Materials, 2020, 13(18): 4017. [42] AIREY D W, FAHEY M. Cyclic response of calcareous soil from the North-West Shelf of Australia [J]. Geotechnique, 1991, 41(1): 101-121. [43] 陈善民, 王立忠, 李挺, 等. 水泥土动力特性室内试验及复合地基抗震特性分析[J]. 浙江大学学报(工学版) , 2000, 34(4): 50-55. CHEN S M, WANG L Z, LI T, et al. Experimental determination of dynamic properties of cement-treated soil and earthquake behavior of composite foundation [J]. Journal of Zhejiang University(Engineering Science) , 2000, 34(4): 50-55. [44] 梁旭, 蔡袁强. 复合地基动弹性模量和阻尼比的试验研究[J]. 土木工程学报, 2004(1): 96-101. LIANG X, CAI Y Q. Study on the elastic modulus and the damping ratio of composite foundation [J]. China Civil Engineering Journal, 2004(1): 96-101. [45] ZHANG L, SHI J, PENG Q, et al. Dynamic behavior of Haikou marine clay treated with cement [J]. Construction and Building Materials, 2023, 405: 133320. [46] KE X, CHEN J, SHAN Y. A new failure criterion for determining the cyclic resistance of low-plasticity fine-grained tailings [J]. Engineering Geology, 2019, 261: 105273. [47] NAMIKAWA T, KOSEKI J, SUZUKI Y. Finite element analysis of lattice-shaped ground improvement by cement-mixing for liquefaction mitigation [J]. Soils and Foundations, 2007, 47(3): 559-576. [48] 郑晓, 郭玺. 水泥土复合土循环软化现象试验研究[J]. 路基工程, 2008(3): 67-69. ZHENG X, GUO X. Experimental study on cyclic softening phenomenon of cement-soil composite soil [J]. Subgrade Engineering, 2008(3): 67-69. [49] SUBRAMANIAM P, BANERJEE S. Factors affecting shear modulus degradation of cement treated clay [J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 181-188. [50] IDRISS I M, SINGH R D, DOBRY R. Nonlinear behavior of soft clays during cyclic loading[J], Journal of the Geotechnical Engineering Division, 1978, 104(12) : 1427-1447. [51] 李普, 樊恒辉, 史祥, 等. 地震荷载下水泥土循环剪切特性研究[J]. 岩石力学与工程学报, 2016, 35(S2): 4227-4234. LI P, FAN H H, SHI X, et al. Study on cyclic shear characteristics of cement-soil under seismic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4227-4234. [52] YASUHARA K, HYDE A F L, TOYOTA N, et al. Cyclic stiffness of plastic silt with an initial drained shear stress[C]//Proc Geotechnique Symp on Pre-failure Deformation of Geomterials. London: Thomas Telford Ltd. , 1998: 373-382. [53] 梅君. 北部湾海相沉积层水泥搅拌土动力特性室内试验研究[D]. 南宁: 广西大学, 2019. [54] 徐望国, 张家生, 贺建清, 等. 低灰量水泥土动力特性试验研究[J]. 湖南科技大学学报(自然科学版) , 2007(2): 52-56. XU W G, ZHANG J S, HE J Q, et al. Study on dynamic properties of cement improved soil with low cement content [J]. Journal of Hunan University of Science & Technology (Natural Science Edition) , 2007(2): 52-56. [55] 朱云强, 屈俊童, 季东, 等. 有机质含量对滇池重塑泥炭质土动强度特性的影响[J]. 科学技术与工程, 2022, 22(12): 4928-4937. ZHU Y Q, QU J T, JI D, et al. Influence of organic matter content on dynamic strength characteristics of remolded peaty soil in Dianchi lake [J]. Science Technology and Engineering, 2022, 22(12): 4928-4937. [56] 吴世明. 土动力学[M]. 北京: 中国建筑工业出版社, 2000. [57] 高玉峰, 黎冰. 黏土与EPS颗粒混合轻质土的动强度特性试验研究[J]. 岩石力学与工程学报, 2007(S2): 4276-4283. GAO Y F, LI B. Experimental study on dynamic strength properties of lightweight clay mixed with EPS beads soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 4276-4283. [58] 王凤池, 王庆龙, 董明, 等. 橡胶水泥土动力特性的试验研究[J]. 防灾减灾工程学报, 2014, 34(2): 253-258. WANG F C, WANG Q L, DONG M, et al. Experimental study on dynamic characteristics of rubberized cemented soil [J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(2): 253-258. [59] 王闵闵, 鹿群, 郭少龙, 等. 循环荷载作用下纤维水泥土动力特性[J]. 岩土力学, 2018, 39(5): 1753-1760. WANG M M, LU Q, GUO S L, et al. Dynamic behavior of soil with fiber and cement under cyclic loading [J]. Rock and Soil Mechanics, 2018, 39(5): 1753-1760. [60] BARKSDALE R D. Laboratory evaluation of rutting in base course materials[C]//Presented at the Third International Conference on the Structural Design of Asphalt Pavements. London: Transportation Research Integrated Database, 1972: 161-174. [61] LING X, LI P, ZHANG F, et al. Permanent deformation characteristics of coarse grained subgrade soils under train-induced repeated load[J]. Advances in Materials Science and Engineering, 2017, 2017. [62] LI N, WANG X, QIAO R, et al. A prediction model of permanent strain of unbound gravel materials based on performance of single-size gravels under repeated loads [J]. Construction and Building Materials, 2020, 246: 118492. [63] 陈颖平, 黄博. 掺水泥模拟原状软土动力特性的可行性试验研究[J]. 建筑结构, 2015, 45(1): 87-90. CHEN Y P, HUANG B. Feasibility experimental study on simulating dynamic characteristics of natural soft clay by filling cement [J]. Building Structure, 2015, 45(1): 87-90. [64] AN L, CHEN J, LI D, et al. Accumulative strain of sand-containing soft soil reinforced by cement and sodium silicate under traffic loading [J]. Sustainability, 2022, 14(21): 14127. [65] 刘新宇, 张先伟, 孔令伟, 等. 冲击荷载作用下花岗岩残积土的动力损伤与破坏机理[J]. 岩土工程学报, 2019, 41(10): 1872-1881. LIU X Y, ZHANG X W, KONG L W, et al. Structural damage and dynamic failure mechanism of granite residual soils under impact loading [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1872-1881. [66] CHIARADONNA A, TROPEANO G, D’ ONOFRIO A, et al. Development of a simplified model for pore water pressure build-up induced by cyclic loading [J]. Bulletin of Earthquake Engineering, 2018, 16: 3627-3652. [67] 黄茂松, 边学成, 陈育民, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2020, 53(8): 64-86. WANG M S, BIAN X C, CHEN Y M, et al. Soil dynamics and geotechnical earthquake engineering [J]. China Civil Engineering Journal, 2020, 53(8): 64-86. [68] 王皆伟, 王汝恒. 土动力本构模型初探[J]. 四川建筑科学研究, 2005(5): 89-91. WANG J W, WANG R H. The study of the soil dynamic constitutive model [J]. Sichuan Building Science, 2005(5): 89-91. [69] 迟世春, 郭晓霞, 杨峻, 等. 土的动力Hardin-Drnevich模型小应变特性及其阈值应变研究[J]. 岩土工程学报, 2008, 30(2): 243-249. CHI S C, GUO X X, YANG J, et al. Small strain characteristics and threshold strain of dynamic Hardin-Drnevich model for soils [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 243-249. [70] TER-MARTIROSYAN A, SIDOROV V, SOBOLEV E. Dynamic properties of soil cements for numerical modelling of the foundation’s basis transformed under the technology of deep soil mixing: a determination method [J]. Buildings, 2022, 12(7): 1028. [71] YU X, LIU H, SUN R, et al. Improved Hardin-Drnevich model for the dynamic modulus and damping ratio of frozen soil [J]. Cold Regions Science and Technology, 2018, 153: 64-77. [72] 侯天顺, 崔奕翔. EPS 颗粒混合轻量土的动变形特性及修正 Hardin-Drnevich 模型研究[J]. 岩土工程学报, 2021, 43(9): 1602-1611. HOU T S, CUI Y X. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611. [73] ORAKOGLU M E, LIU J, NIU F. Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles [J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 269-284. [74] 李潇旋. 静态与循环荷载下非饱和土的弹塑性双面模型研究[D]. 北京: 北京交通大学, 2021. [75] 曾军军, 卢廷浩. 考虑土体结构性的弹塑性软化模型[J]. 岩土力学, 2007, 28(6): 1091-1094. ZENG J J, LU T H. An elastoplastic softening model of structured soil [J]. Rock and Soil Mechanics, 2007, 28(6): 1091-1094. [76] LEE J S. Cyclic hardening and degradation effects on site response during an earthquake [J]. Journal of the Earthquake Engineering Society of Korea, 2008, 12(6): 65-71. [77] 胡亚元. 关于率无关塑性力学和广义塑性力学的评述[J]. 岩土工程学报, 2005, 27(1): 128-131. HU Y Y. Comment on rate-independent plasticity and generalized plasticity [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 128-131. [78] 王德玲, 葛修润. 关于分级单屈服面模型的几个问题的探讨[J]. 岩土力学, 2004, 25(7): 1059-1062. WANG D L, GUO X R. Discussion of some problems about HISS model [J]. Rock and Soil Mechanics, 2004, 25(7): 1059-1062. [79] 庄海洋, 陈国兴, 朱定华. 土体动力粘塑性记忆型嵌套面本构模型及其验证[J]. 岩土工程学报, 2006, 28(10): 1267-1272. ZHUANG H Y, CHEN G X, ZHU D H. Dynamic visco-plastic memorial nested yield surface model of soil and its verification [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1267-1272. [80] 李兴照, 黄茂松, 王录民. 流变性软黏土的弹黏塑性边界面本构模型[J]. 岩石力学与工程学报, 2007, 26(7): 1393-1401. LI X Z, HUANG M S, WANG L M. Bounding surface elasto-viscoplastic constitutive model for rheological behaviors of soft clays [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1393-1401. [81] VALANIS K C. A theory of viscoplasticity without a yield surface [J]. Archives of Mechaniscs, 1971, 23(4): 517-551. [82] 丁勇春. 软土地区深基坑施工引起的变形及控制研究[D]. 上海: 上海交通大学, 2009. [83] 王军, 郑晓, 蔡袁强, 等. 应变控制下水泥土动静力特性试验[J]. 浙江大学学报:工学版, 2010, 44(10): 1857-1862. WANG J, ZHENG X, CAI Y Q, et al. Experimental research on static and dynamic characteristics ofcement soil under strain control [J]. Journal of Zhejiang University(Engineering Science) , 2010, 44(10): 1857-1862. [84] 胡秀青, 董全杨, 吕程伟, 等. 水泥土搅拌桩软土地基土体动力特性的共振柱试验研究[J]. 岩土力学, 2016, 37(S2): 343-348. HU X Q, DONG Q Y, LYU C W, et al. Resonant column experimental study of dynamic properties of soft clay foundation with cement soil mixing piles [J]. Rock and Soil Mechanics, 2016, 37(S2): 343-348. [85] 张鹏, 朱珍德, 王军, 等. 不同掺剂对水泥土动力特性的影响[J]. 长江科学院院报, 2014, 31(5): 62-67. ZHANG P, ZHU Z D, WANG J, et al. Effect of additives on dynamic properties of cement-stabilized soils [J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(5): 62-67. [86] WU J, WANG J, LIU M, et al. Dynamic properties of silt-based foamed concrete as filler in subgrade [J]. Journal of Materials in Civil Engineering, 2022, 34(10): 04022241. [87] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2021, 34(Z2): 273-277. LI Y P, LI T. Stability mechanism and research progress of soil stabilizer [J]. Materials Reports, 2021, 34(Z2): 273-277. [88] 李庆冰. 橡胶水泥土动力特性的试验研究[D]. 沈阳: 沈阳建筑大学, 2011. [89] 张彬, 宫照伟. 铁尾矿粉改良水泥土的强度与动力特性试验研究[J]. 硅酸盐通报, 2017, 36(11): 3607-3612. ZHANG B, GUANZ Z W. Experimental study on strength and dynamic characteristics of cement soil modified with iron tailings powder [J]. Bulletin of The Chinese Ceramic Society, 2017, 36(11): 3607-3612. [90] 汪明元, 鹿群, 郭少龙, 等. 素水泥土及纤维水泥土动力特性试验研究[J]. 人民长江, 2018, 49(12): 87-92. WANG M Y, LU Q, GUO S L, et al. Experimental study on dynamic properties of pure cement soil and fiber reinforced cement soil [J]. Yangtze River, 2018, 49(12): 87-92. [91] 庄心善, 寇强. 循环荷载下纳米SiO2改良水泥土动变形研究及微观分析[J]. 工业建筑, 2022, 52(5): 169-173. ZHUANG X S, KOU Q. Research on dynamic deformation of Nano-SiO2-Improved cement-soilunder cyclic loading and its microstructure analysis [J]. Industrial Construction, 2022, 52(5): 169-173. [92] MOLLAEI M, JAHANIAN H, AZADI M. Laboratory study of the cyclic behavior of cement sand with nanoclay[J]. Geotechnical and Geological Engineering, 2023: 1-13. [93] 王清, 陈慧娥, 蔡可易. 水泥土微观结构特征的定量评价[J]. 岩土力学, 2003, 24(S1): 12-16. WANG Q, CHEN H E, CAI K Y. Quantitative evaluation of microstructure features of soil contained some cement [J]. Rock and Soil Mechanics, 2003, 24(S1): 12-16. [94] NARANI S S, ZARE P, ABBASPOUR M, et al. Evaluation of fiber-reinforced and cement-stabilized rammed-earth composite under cyclic loading [J]. Construction and Building Materials, 2021, 296: 123746. |
[1] | Guo Kun-xiang, Li De-yuan, Huang Jun-dong. A Study of Aerodynamic Characteristics of Back-swept Wind Turbine Blades under Extreme Operating Gusts [J]. Journal of Guangdong University of Technology, 2020, 37(05): 100-104. |
|