基于先验提示驱动语义一致的医学报告生成

    Based Prior Prompt Driving Semantically Consistent Medical Report Generation

    • 摘要: 自动化医学报告的生成对于缓解放射科医生的工作负担、降低诊断误差具有重要意义。尽管现有工作对病变区域进行了深入研究,但在生成详细描述方面仍有改进空间。现有方法在一定程度上降低了对视觉病变语义的敏感度,并削弱了视觉语义与文本语义之间的关键联系。为了解决这些局限,本文介绍了一种新颖的基于先验提示驱动的语义一致模型。该模型设计了提示病灶增强模块,系统整合放射学胸片影像的正常诊断描述与异常诊断描述,构建先验提示。通过提示注意力机制融合视觉特征与文本提示,从而增强了模型对潜在病变特征的感知能力。随后,本文进一步提出了视觉文本语义一致模块,利用对比学习对视觉语义和文本语义进行深度对齐,并利用提示标记引导模型生成丰富的上下文信息,以优化后续的报告生成过程。该模块显著缩小了医学图像与生成报告之间的语义差异,提高了报告生成的准确性和可靠性。通过在IU X-Ray和MIMIC-MV数据集上进行的广泛实验后,证明了本文提出的方法在生成高质量放射学报告方面优于现有方法。

       

      Abstract: Automated radiology report generation is crucial for reducing radiologist workload and minimizing diagnostic errors. Although existing studies have conducted in-depth research on lesion regions, there is potential for enhancement in generating detailed descriptions. Current methods tend to diminish sensitivity to the semantic information of visual lesions and weaken the critical association between visual and textual semantics. This paper introduces a novel Prior Prompt-Driven Semantic Consistency Model (PPD-SCM) to address these limitations. The Prompt-Lesion Enhancement module in the proposed model systematically integrates both normal and abnormal diagnostic descriptions from radiological chest X-ray images to construct prior prompts. By employing a prompt attention mechanism that fuses visual features with textual prompts, this module enhances the model's ability to perceive potential lesion features. Furthermore, this study introduces a Visual-Textual Semantic Consistency (VTSC) module that employs contrastive learning to deeply align visual and textual semantics. By leveraging prompt tokens to guide the model in generating enriched contextual information, the VTSC optimizes the subsequent report generation process. It effectively reduces the semantic gap between medical images and the generated reports, thereby enhancing the accuracy and reliability of report generation. Extensive experimental results on the IU X-Ray and MIMIC-MV datasets demonstrate that our proposed method significantly outperforms existing approaches in generating high-quality radiology reports.

       

    /

    返回文章
    返回