双语义引导与簇对齐的域适应检索

    Dual Semantic Guidance and Cluster Matching for Domain Adaptive Retrieval

    • 摘要: 域适应检索(Domain Adaptive Retrieval, DAR) 通过减少域间差异来实现不同域之间的高精度快速检索。然而,现有工作仍存在两个问题:a) 目标域中被错误标记的样本用于训练会导致错误累积;b) 大多数方法局限于标签级别的任务,忽视了更细粒度的检索需求。因此,本文提出一种新颖的双语义引导与簇对齐的域适应检索方法(Dual Semantic Guidance and Cluster Matching for Domain Adaptive Retrieval, DSG-CM) 。首先,逐步从目标域中挑选出高置信样本,以减少错误伪标签的影响。其次,将样本的类标签信息与从特征中提取出来的多标签语义信息相结合,使用双语义引导增强学习样本独特性。最后,根据多标签语义信息将样本划分为微簇,并探索不同域之间微簇的关系以实现更准确的检索。该方法能够生成紧凑且高效的哈希码,性能更优。在3个基准数据集上的实验表明,此方法优于其他方法。

       

      Abstract: Domain adaptive retrieval (DAR) has obtained the high-precision and fast retrieval across different domains by reducing domain discrepancies. However, existing works still face two issues: a) incorrect pseudo labels in the target domain cause error accumulation during training, and b) most existing methods are limited to single-label works and ignore the requirement for finer-grained retrieval. To address these problems, we propose a method called Dual Semantic Guidance and Cluster Matching for Domain Adaptive Retrieval (DSG-CM) . First, samples with high confidence in the target domain are gradually selected to reduce the impact of incorrect pseudo - labels. Second, the distinctiveness of samples is enhanced by incorporating multi-label semantic information from features with the class label information of the samples.Lastly, samples are divided into micro-clusters and the inter-cluster relationships between different domains are explored to enhance the retrieval precision. This method can generate compact and efficient hash codes, leading to superior performance. Experiment results on three benchmark datasets demonstrate that our method outperforms others.

       

    /

    返回文章
    返回