基于动态图多时间视野注意力的交通流量预测

    Traffic Flow Prediction Based on Dynamic Graph Multi Temporal Perspectives Attention Network

    • 摘要: 交通流量预测是智能交通系统中的一项重要技术。精准的交通预测可以减少拥堵的发生,提高交通效率。但交通流量数据具有复杂的时间关系,而且捕获动态的交通空间关系具有较大的挑战。为了提高预测准确率,本文提出了动态图多时间视野注意力网络(Dynamic Graph Multi Temporal Perspectives Attention Network,DGMAN) ,该网络基于交通流量时空数据进行预测。网络使用动态图学习模块(Dynamic Graph Learning Module, DGLM) ,通过建立动态图的方式提取交通节点间动态关系信息。在复杂时间数据中,通过多时间视野注意力机制(Multi temporal perspectives Attention, MtpA) 捕获交通流量时间依赖并挖掘潜在时间关系。最后,本文模型在4个真实世界数据集上进行了实验,与基准模型相比,DGMAN在平均绝对误差(Mean Absolute Error, MAE) 、均方根误差(Root Mean Square Error, RMSE) 和平均绝对百分比误差(Mean Absolute Percentage Error, MAPE) 评估指标上取得了最佳的结果。

       

      Abstract: Traffic flow prediction is an important technology in intelligent transportation systems (ITS) . Accurate traffic prediction can reduce congestion and improve traffic efficiency. However, traffic flow data contains complex temporal relationship, and capturing dynamic traffic spatial relationships is a challenge. In order to improve the prediction accuracy, a dynamic graph multi temporal perspectives attention network (DGMAN) is proposed,based on the spatiotemporal data of traffic flow. The model uses a dynamic graph learning module (DGLM) to extract the dynamic relationship information between traffic nodes in traffic data by establishing a dynamic graph. In complex temporal data, the multi temporal perspectives attention mechanism (MtpA) captures the temporal dependence of traffic flow and mines potential temporal relationships. Finally, the proposed model is experimented on 4 real-world datasets. Compared with the baseline models, DGMAN achieves the best performance in the mean absolute error (MAE) , root mean square error (RMSE) and mean absolute percentage error (MAPE) evaluation metrics.

       

    /

    返回文章
    返回