典型小分子量α-二羰基化合物在含铵颗粒物界面的水合反应机理

    Mechanisms of Hydration Reactions of Typical Small α-dicarbonyls at the Interfaces of Ammonium-bearing Particles

    • 摘要: 小分子量α-二羰基化合物(Small α-dicarbonyls,SαDs) 作为二次有机气溶胶(Secondary Organic Aerosol,SOA) 的重要前体物,其界面化学过程被认为是SOA的重要生成途径。然而,SαDs在复杂颗粒物界面上的化学反应及其对SOA的贡献机制还不清晰。因此,本文采用玻恩−奥本海默分子动力学模拟研究了乙二醛(Glyoxal,GL) 和甲基乙二醛(Methylglyoxal,MG) 两种典型SαDs在氯化铵(NH4Cl) 和硫酸铵(NH4)2SO4颗粒物界面上的水合反应机制。结果表明,GL和MG的醛基基团在NH4Cl和(NH4)2SO4颗粒物界面上的水合反应均经历了(I) 水分子中的氢转移形成阳离子中间体、(II) 水分子中羟基攻击醛基碳原子形成过渡态(Transition State,TS) 以及(III) 水团簇间的氢转移形成醛基−二醇3个步骤。\mathrmSO_4^2- 的存在对GL和MG的界面水合反应起促进作用。然而,MG的酮基基团在NH4Cl和(NH4)2SO4颗粒物界面上的水合反应包括(I) TS的形成和(II) 酮基−二醇的形成2个步骤,反应分别由1个及7个水分子介导。过量水分子的参与导致MG酮基基团在(NH4)2SO4颗粒物界面上的水合反应比在NH4Cl颗粒物界面上更难发生。GL和MG在含铵颗粒物界面生成的二醇产物有进入溶液内部参与液相低聚反应的潜势,从而促进SOA的形成。研究结果揭示了不同含铵颗粒物界面组分对GL和MG界面水合反应机理的影响,这为理解SαDs在复杂气溶胶颗粒物中的界面化学过程及其如何影响SOA的形成提供了理论依据。

       

      Abstract: Small α-dicarbonyls (SαDs) , as the important precursors of secondary organic aerosol (SOA) , significantly contribute to SOA formation through their interfacial chemical processes. However, the reaction mechanisms of SαDs at the interfaces and their roles in the formation of SOA remain uncertain. Hence, Born-Oppenheimer molecular dynamics simulation was performed to investigate the interfacial hydration reaction mechanisms of typical SαDs, including glyoxal (GL) and methylglyoxal (MG) , at the interfaces of ammonium chloride (NH4Cl) and ammonium sulfate (NH4)2SO4 particles. The results show that the hydration reactions of the aldehyde groups of GL and MG at both interfaces proceed via three steps: (I) hydrogen transfer of the interfacial water molecule leading to the formation of the cationic intermediates, (II) the attack of the aldehyde carbon atom by the hydroxyl group of the interfacial water molecule forming the transition states (TS) , and (III) subsequent aldehyde-diol formation. Sulfate ion (\mathrmSO_4^2- ) promotes the interfacial hydration reactions of the aldehyde groups of GL and MG. However, two steps, i.e., (I) TS formation and (II) ketone-diol formation exist for the hydration reaction of the ketone group of MG. The process is mediated by one and seven water molecules, respectively. Excess water molecules hinder the hydration reaction of the ketone group of MG at the interface of (NH4)2SO4 particle. The diol products generated by the hydration reactions of GL and MG at the interfaces have the potential to come into the droplet interior and subsequently engage into oligomerization reactions, thereby contributing to the formation of SOA. The results provide an insight into the interfacial chemistry of GL and MG in different particles and their influence on the SOA formation.

       

    /

    返回文章
    返回