Abstract:
Aiming at the problems of unstable structure, oversized and low productivity of C-stator, and low slot fullness and torque density of U-stator and E-stator in the disk transverse flux motor for high-torque and low -speed, a new multi-layer winding disk transverse flux motor topology with windings wound at both ends of the U-stator is proposed. The structure and principle of the motor are introduced, and a reluctance-based motor 3-D equivalent magnetic network model established. The relations between the no-load flux linkage, back-EMF and the main dimensions are calculated and derived for the main magnetic flux considering the spatial leakage of the permanent magnets. The superiority and effectiveness of the proposed motor structure is analyzed through a comparative study with the 3D finite element results of cogging torque, torque density and power factor of a double-wound disk transverse flux motor. A prototype machine is piloted and tested for the back-EMF, and the accuracy of the modeling and analysis method is verified by comparing the results of simulation and experiment.