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A Music Recommendation Model Based on Users' Long and Short
Term Preferences and Music Emotional Attention

Wu Ya-di, Chen Ping-hua
(School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: Users' long-term preferences and the relationship between historical information and current situation are
usually ignored in existing user preference modeling and user record unified modeling. To address this, in this
paper, we propose a music recommendation model based on users' long-term and short-term preferences and music
emotional attention. Firstly, we divide the user's listening record into multiple historical and current sequences, and
learn the features by multiple long and short-term memory networks, respectively, to obtain user's long and short-
term preferences. For the historical music sequences, we propose the concept of sequence period is proposed to
obtain the long-term preferences by calculating the weights of the sequence period. For the current sequence, we
use the average pooling to extract the music features of the current scene to obtain the short-term preference.
Secondly, we learn the emotional characteristics of music from the acoustic signals, and use the attention
mechanism to calculate the emotional factors of music. Finally, we integrate the music emotion factor into the user's
long-term and short-term preference to generate a music recommendation list. The experimental results on the
last.fm real data set show that the proposed model achieves 0.543 5 in term of the NDCG@10, which is better than
the existing methods. The ablation experiment and characteristic contribution analysis further demonstrate the

effectiveness of the model.
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Fig.1 The basic framework of the nLSTMs+AM model
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FEAF RARAS 10 8, FR TR ok B ] BB A2 4TI 1
DAL, A P 41 S [ e AR R R s, R AL 5 IX 2615 12
LRSI I TR BB o D9 S BIAX — A, FT A (i 1 2
155, FE T I BOR M IR A « BLAASR B, 4 1K)
53 AR B, T4 1 8 R R 43 28 ANk ) B o o 1
FEANI[R] B, #3E — A E IR H, = {myumy, -+ my )
Hrdme Mg ER A1 BN 220 — AN - 85800 &
IR ARG VLSRN BN I R) B R TR AL 7 o
}}_UﬂmHﬂ )
Y |HUH,|

MEM EE, 24 (A B B SR BB, Bl
(R A AL S iy o 6 T I A P s R 41S AR R
SRR BT Ta], AT DAAE T 1S | 78 S B 48 T 1) B
30, Flpipas- -+ o ps, 3, Hetbp e (1,2, -+ ,28) 6

FAE B br FH 7 B 24 5B 18] B, FEAN 7 525 471
S, SRR IRs, N

= Y= O
= o exp(Tep,)

NPt NS, A 4TI (8] Bre 5 58 I FE T & AR 11
7] B 2 [R) PR T) AR AL

W R IR, FEB S 8RR, 5
J T A T) B K g W R S g S B &R . B H TN
1, AT sy, 80, 8,00 ) KRR =1 B 52751
212 ksadipisEd

XFT AL, I — A A LS TMR X i
AT AT SR AT Sk AT, T 24 i I ) e 24
JBOIRAS b, AT R 9 - S AR U« jEAh, X5 T8, 7
FIN BBV R 1A

1 1S4
5, = mzlh @)

T

AR, FEPES, OB i 05 R AR
F P B B R T, T F 2R AT 7S, F BT A & SR
55 I 0T R R e e R AR A

S T ARES =(5,,8,,--.S )RR
(81,80, 8, Z ) » I MBI A BRAE R HH P
KLt s, o

1 ISl
5= |S,,|Zi:1WlSi ©)
A WO R YIZR AR R R

22 BRBRGEENER

B AR — M RIE SR ZEARTE A, KGR R
VERE SR i JE e, o P i e 1) 2R 52 e R 2R
AR PR BE 2 2] T73250 B S 5 Hr R B 75 27
TEEAT GRS, 493 35 SR 15 R AL, Jad 3 = L]
I3 M R AR HERE TP A, DASRAS S A 1
JE SRR o
221 FRIFAERIK

B AR IS I O T, AR IR I AR
T S8 IR 22 SRR AR S B 25 openSMILE R HL
98YE 1 75 “E LR , BLFHMC N Hofi i 155 (L 5 E v
FE B EE), DLAGOX SO IR 1T (1) 6 52 BUFH — L6 R 25
(UyE P IE I D) o

P, R —MNREMEAE M4 (Deep Neural
Network, DNN) % 5 22 AT 1 25, LA AAIEZR
P 1R 7 O 2 5K B AR (TR0 s B IR L 1
R RAR D IREE) S AR TR T R R .
DNNI 4N A2 BT 75 ZFA4RHE ) 2 1) 9F4%, DNN )
I BT PARIA N

Znst = (W2, +by) (6)



% 4 3]

FMGI, 55« BT AR i A A 3 SR AR 0 B 5 AR AR 41

AW, b, NBHL 2, R E REIEE RS .
222 HRABAERTEE
e A R ) B (B SRS IERHE L P ID,
B IRID IS TERFAE ) A a4t N\ ) e, e rpris ]
FREARIE LR (R b 2R e B RIZER) RILE (LA
H R ) B (1% AN FH P — 5 SR 28 R B ) gt
175K,
x'=W,x;+b, @)
L W, b, NIRANSEL TG B [ &, b = 0)
X, NSRRI &
TR IIHUITERGAS [R50 4 F 4 1 B — R B X
e E Y 1 SRR AT IR AN
€. = Z::]a,-x,-’ ®)
s o RN BRI, T R B X B,
T B0E — A2 B R IS AT 5
a'=w'oc(Wx,+B)+b )
K W.BEFNESELw bt F2ESH . @)1
VER 1 B0t — 20 R H softmax )4 — L AL #H
_ exp(e)
> explar)
XFE, A3 T & R BB T, fley,
WE3 R .

(10)

j | Qe Qe
; % i} openSMILEi D GA Q o
LA : i
o j @”19_@ %ID_"D R
( N )
@t)
( BN )

K3 R R L
Fig.3 The structure of the music emotion model

23 EAHEE
1 25 T R T T A 0. 46 00
RonZJa, UM E R BRI ip -
p = softmax(W,(e,®s,®h,_,)) (11)

b @ NEERZ, W NI & R A8
B s e 9 SRR IR 15 s, B, 50 00 P R BT A

SRULITLIS

PRI, H s P AE R — AN [ Bkt A7 A e T
(18 AR R B R AR, T H A bR K R] LR
XS EAUSR -

L=-Y"" In(p) (12)

i NAINZRFEA S p R S I SRR
R AR B AR o 5 8 B R A TR SR BB B AR
el 0 TR IEREAR u,m*, 1), BENLIE FFu AR AL H.
(B SR, T RE AR (u,m, ) o SUOREARHE B IR I 6
i 3 2 H EA [ D PR REA T AN o

3 SRS

AT A B S BEAE b E ) EE S I6 AT
A SIS SR EAn LS TMs+FAMAR Y

31 SHwRE
311 #EL

AL SE G E A SR YR T Last.fm (http://www.last.
fm) HI1K usersH a4, Last.fm g — 3K 5[5 i ¥ 25 H,
BTG SRALX, Ha k& =4 T 3 APL Hh
BFE1K users. ZEHR LA NA £ UE BB
EAR AR, B 71 0006 H A AT & &
R s SRR TA], DUSH 2 A SR ARG B

Xz RS, o BERR O P T 10N A%
X ) R s K P T A I A R RS A o — A
B — [P ER IR TR 2D T 3N HE e S B s BUdE
DT 52 B ARG BRH P 2 o e o 480 Ak B
Je s BR300 08025 - R A HAC %, B0
934/~ FURI40 868 FT 5 4Fs o

KA P HT80% MBI H T2, A H
TR BRI P & R ICF AT Rl LA H.
T35, (R ORAIEEA 10 8 TN ZRER B4R

% RE R (A8, BN B R A — AN IEFEA,
TN IE AR A5 99 BEAT LA R 1) 57 FE AR TE X
BT LT 100 MEA H) W 471573«
3.1.2 AreAEA

ASCHEHE H IFnLSTMs+AM 5 DL il 24 1
TRIE S ) HERE 7 R4 T LU

LSTM: 1X s RNNE Y () —Fh AR {4, 76 4038 7 )
s 7 R IR AT

DeepFM!"™: ‘B 45 | B 2o A LAN P2 o 2%

AFM"™: Bl — AN A = T I 48R A
[FARFAIE A B B

WEAN, 3B B8 T LA THI 7] 7 AR R 7 vk


http://www.last.fm
http://www.last.fm

42 J7 R Tk R IR

40 5

c-IFRM™: — P&t I & SRR e 5%, 456 5%
FAEALE DR T (VR 5 SRR TV

DCUE™: R & N 25— F P iR NSRBI TR, —Fb
R P40 28 BRI SR 3 A0 A 25 BV 6 72

STABR!"": —F I FH v = 40 28 W 48 & 5K 7
F| SRR 2 ) F P R IR R B (1) 70

MEM"?: AR 45 I (WU i 5%, 380 & SR RN
XS A JR AT R S SR A A i3 A T AR

PEIA™ s — Pt B P (R4 40 it P A0 it 1 s 72
AT R B A
3.1.3 RdRAR

N T VRN TR RE SR LR 3ANMES &
HEFETTEE FHVEA HE bR -

Recall@K . F [71 28, 37~ IERA T 4 IERE A (5 5
PRIEFEAS B .

HR@K . iy 1 3, /£ Top-NAfEF T, & —Fh i A I
iy 2 B 2 FE AR, tF R AN

fHi K
HR@K = Numbelr((;T its@ (13)

1 GT AP KRR & , NumberofHits@K N &
AN Top-KA1 2 v & Tl & 1N s i

NDCG@K o JA— A4 2 1138 28, FH K PEAf Top-
KHNFRE M LSR8 BRI 2280 o i R FE R 45
EE— PRI TR JEE 1 45 SR B S M) e 2% B ¥R AR A9 90 H
IR FEE 11 225 SRt LA B S 0 PR 7 5 PR B e, 4B A 45
oy I

TEARSCH, SEFEK=101E1T VA .
3.1.4 BHRE

VI 8 TR B 2 20 7 VI R N 4 B R B0tk
A E 500 18 BTG 6 2 B0R s o A B L

Bgatl, FER RS N B AL SR AdamBEAT AL,

KN H256, 2 21 ZH0.01.

32 LIEER
321 eFiaeIrE

AN [ ) HEFE T R R a5 R R L R AE R — 5
o BRI A5 SR AR TR R

MGETH s AT DL g4

(1) FELI a4 b, A SCHR H InLSTMs+AM
TEREA T Ar b 0 FE 28 16 25 AL T B A ) B A A
nLSTMs+AMFRecall@10-HR@10FINDCG@10%>
AiE30.704 8,0.811 7,0.543 5. & E P45 RiG 4
HERR Tz iR R e

(2) BT 75153 Mr 1 /1% (STABR.MEM, PEIA)
EIRIET G5 KA TR, AR SR BT 5 T A AL

® 1 ARTERHEEERE

Table 1 Experimental results obtained by different methods on

the Last.fm dataset
Jrik Rec@10 HR@10 NDCG@10

LSTM 0.4959 0.6335 0.4022
DeepFM 0.568 6 0.697 6 0.462 6
AFM 0.5992 0.753 6 0.4924
c-IFRM 0.5852 0.7242 0.490 1
DCUE 0.643 6 0.7530 0.4978
STABR 0.6390 0.7619 0.4942
MEM 0.664 8 0.778 3 0.5118
PEIA 0.690 1 0.794 1 0.5369
nLSTMs+AM 0.704 8 0.8117 0.5435

)75 1%:(DeepFM AFM. c-IFRM) , 3 15 B A1 Fi W & i
S P AT A A ] DARR M RE

(3) TEX ELAR Y 772 , MEMATPEIA 26 Il i 4F- -
FH 1K P P 5 320 2 B T K R R B O 7, " 10 A
TSR LT @R A, I S5 A A i
(1) L SR, 7R AT X 5125 FE DT S R0 24 11 7 41 5
PZIEPIE R ME RIS DL s MEMATPETATR (S HEFE
W B kAL IX N LSTMs+AMAL T-3X Py i 5 i 56

(4) 5 H AR AR L, J 9% 2 A B 7 7
(AFMAIPEIA) IV ARIL T DAAS [F] AL EE (X 7
RSAE P B

(5) DeepFM . AFMIIIE FLSTM o X fi 7 T A
ANTRIF SR Z ) R 0% R IR o b Ab, o-IFRMAX A | T
AE BAE AN, HYEREAWIDCUE. STABR\MEM.
FHECZ R, oA B 7 3220 8 SR AR AR B SR 1 B R
FPF A, OO T AR
322 P e BT

N T BAIENLS TMs+AM K J 1A i 47 S AT
J B I B A %) 14 B3 25 1) DTk, A5 40 1k
— R (R AT AR AR A TV A

S_Model: X AN A B T A SO Y g A5
e, AFIH BAANLSTMM 28 55 i 7 i el e st A T e A
FREIH 4 A 4t o

L_Model: 1X /™ iR A HH B T A SRS (1 0 A5
B, AT K.,

L_Model’ : iXANRRAMH R 1 A SCABEAY (1) 4 A
B, B3 S8 Bt e B AU BLF 334k
BAERE .

Model = 3X N RAS K F P340t Ak S AR AR A S
PRI e ) e 51 et B IR A

nLSTMs+AM FEZ AR 1) 45 R A2 7 o



% 4 3]

FMGI, 55« BT AR i A A 3 SR AR 0 B 5 AR AR 43

22 ANFINnLSTMs+AMARA [ 1 AE
Table 2 Performance of different nLSTMs+AM variants

T3 Rec@10 HR@10 NDCG@10
S_Model 0.5854 0.738 1 0.5150
L_Model’ 0.6487 0.7617 0.5274
Model’ 0.674 1 0.783 6 0.5312
L_Model 0.6924 0.798 1 0.5396
nLSTMs+AM 0.704 8 0.8117 0.5435

SRR GUIE ~22P

(1) L_Model’ /LS Model3 45 5 4, 5 K]
Al BE/ZL_Model " R LATE 47 e $2 FH P 4 1A B
P, IXIE REH fR R T AR K R L R Ak

(2) L Model#%+FL_Model’ \Model’ ¥t —#>
Pei T ERE, R RUEL. Model AT LR FH 7 24
FIORAS B 4 e 4 FH 7 3 5215 B HPoAE S MR 38
a5, IXBGAE T T A B AT A U

(3) BARS_Model (1) 5% 5+ JJ A tn HoAth AR AR5 7
{HE AR AT AFRAS b 22 1 LS TM Al c-IFRM 2%
FUABE TR B 4 () T M R, 1 A2 FHTS_Model (14 R
K H TER B, B T RS M R 18]
[PIE R R o

(4) SEEABRINLSTMs+AM 2 _F 3R AR AR R f)
HE, FEERAE B RS R f i 1), 3R I 0 40
TR LT 0 B I Bt 2 BT R F P R — 1 & SR IR
RGN A
323 FAREHBSHEATHRIT

FEAS /N 38 P i e A PP A B 1) B
AR R ST 8 R AR AR (0 35k

ot SR A R AR AN B TRVRRAE, AT 1 drp 3 AR
D2 F BsF TR AR A, o FLAARSR A, v P F 0 SR (1%
AR, TR R4S I TR B 7 4 1 R ) T I . o
Bl4fT7~, NIHE ARG TP 2 RIA “ B R
F IR BIHRTT N 5 5 » T 76 2 B B 4 ) T3
FEFIA RN AT BRI IR, X 5 AT
H 18 4 ol — 2

SEAR3TVREE F I SRAT s, T DA
F HnLSTMs+AM R GE 6% 45 e rf h sl 2548 T A
[FARFAIE PR B 2 (e~ o 23 R 1T TR ALE AN N ()RR
PERSI580) N1 20 R T LA
Maroon SRV & SR 45 N F BT 8% o SR, 72256
30, B T PR RO 8 RN R
A NFTE I IR AE X FIE ST, FH P08 SR ik
P95 [Fi) B 52 380 7 SRRV 1) ) S, 1 8 A 8 T DA
AR 053 B~ EIE R TR L o

——23:00~5:00 ST
-+ 5:00~11:00
——— 11:00~17:00 ., .
R
17:00~23:00

ity 4

K4 FREER B
Fig.4 Analysis of the emotional characteristics of music

®3 MPESRT ARG
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