广东工业大学学报 ›› 2007, Vol. 24 ›› Issue (03): 28-31.
摘要: 基于一种两步稀疏表示的方法,利用随机框架讨论欠定盲源分离的恢复能力.盲稀疏源信号分离算法一般假设源信号是充分稀疏的,讨论了在源信号不充分稀疏的情况下欠定盲源分离的恢复能力的概率估计,进一步刻画了源的稀疏性与恢复能力的关系,揭示了利用两步法处理盲源分离问题的有效性.
[1] BELOUCHRANI A,CARDOSO J F.Maximum likelihoodsource separation for discrete sources. Proc.EUSIP-CO . 1994[2] ZIBULEVSKY M,PEARLMUTTER B A,BOFILL P,et al.Blind source separation by sparse decomposition in a signaldictionary. IndependentComponents Analysis:Principles and Practice . 2000[3] GIROLAMI M.A variational method for learning sparse andovercomplete representations. Neural Computation . 2001[4] LI Y Q,CICHOCKI A,AMARI S.Underdetermined blindsource sepration based on sparse representation. IEEE Transactions on Electromagnetic Compatibility . 2006[5] GEORIEV Pando,THEIS Fabian,CICHOCKI Andrzej.Sparse component analysis and blind separation of underde-termined mixtures. IEEE Transactions of Neural Net-works . 2005[6] Bofill P,Zibulevsky M.Underdetermined sourceseparation using sparse representations. Signal Processing . 2001[7] Li Y Q,Cichocki A,Amari S.Analysis of sparse representation and blind source separation. Neural Computation . 2004 |
No related articles found! |
|