摘要: 采用“两步法”制备了两种用于直接吸收式太阳能集热器的纳米流体循环工质.对这两种纳米流体及其基液进行闷晒实验,通过研究其闷晒温度随环境温度的变化情况来判断纳米流体光热转换性能的优劣.结果表明:铝纳米流体升温速率较基液和碳纳米管纳米流体的快,闷晒温度高出基液近25 ℃,高出碳纳米管纳米流体近10 ℃,显示出很好的光热转换性能.
[1] Das S K, Putra N, Roetzel W. Pool boiling characteristics of nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46(5):851-862. [2] Xie H, Wang J, Xi T, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics, 2002, 91(7): 4568-4572. [3] Keblinski P, Eastman J A, Cahill D G. nanofluids for thermal transport[J]. Materials Today.2005,6:35-44. [4] Choi S U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles[J]. ASME, 1995, 231: 99-105. [5] Mao L B, Zhang R Y, Ke X F, et al. Review of direct absorption solar collection systems[J]. Materials Review, 2007, 21(12):12-15. [6] 骆仲泱, 倪明江, 余春江, 等. 纳米流体太阳能窗式集热器:中国, 200610053634.9[P]. 2006-09-27. [7] 赵佳飞, 骆仲泱, 寿春晖, 等. 纳米流体辐射特性与太阳能窗式集热器研究[C]∥可再生能源规模化发展国际研讨会暨第三届泛长三角能源科技论坛论文集. 南京: 江苏省能源研究会, 2006: 63-67. [8] Tyagi H, Phelan P E, Prasher R. Predicted Efficiency of a NanofluidBased Direct Absroption Solar Receiver[C]∥ASME Energy Sustainability Conference. California, 2007: 729-736. [9] 王瑞金. 磁流体太阳能集热器的温度和热流量特性的实验研究[J]. 功能材料, 2007, 38:1227-1230 [10] 余其铮. 辐射换热原理[M]. 哈尔滨:哈尔滨工业大学出版社, 2000: 179-180. [11] 蒋耀庭,王跃. 红外隐身技术与发展[J]. 红外技术,2003,25(5):7-14. [12] 郦江涛,姜卫陵,赵云峰. 红外隐身涂料的研究进展[J].宇航材料工艺,2000(5):15-18. |
No related articles found! |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 340
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|