广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (2): 71-75.

• 综合研究 • 上一篇    下一篇

一阶脉冲方程反周期边值问题的解

  

  1. 广东工业大学 应用数学学院,广东 广州 510006
  • 出版日期:2011-06-25 发布日期:2011-06-25
  • 作者简介:孙玉虎(1983-),男,硕士研究生,主要研究方向为非线性泛函分析.

Anti-periodic Boundary Value Solutions for First-order -Impulsive Differential Equations

  1. Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China
  • Online:2011-06-25 Published:2011-06-25

摘要: 在有限维空间中研究一阶脉冲微分方程,给出具有反周期边值问题的解的一个条件.

关键词: 脉冲微分方程;反周期解;Leray-Schauder拓扑度

Abstract: Leary-Schauder theory is employed to study the existing problems with first order impulsive differential equations, and anti-periodic solutions for the equations are offered.

Key words: pulsed differential equations; antiperiodic solutions; Leray-Schauder topological  degree

[1] Lakshmikantham,Balnov,  Simeonov. Theory of Impulsive Differential Equations[M].Singapore:World Sci Publish Co,Inc,1989.

[2] Okochi H.On the existence of antiperiodic solutions to a nonlinear  evolution equations associated with differential operators[J].J Funct Anal,1990(91):246-258.

[3] Chen Y Q,Wang F L,Zhou S L.Antiperiodic boundary value problems for finite dimensional differental systems[J].Boundary Value Problems,V.2009,2009.

[4] 汪丽.一维反周期脉冲微分方程[D].广州:华南师范大学硕士论文,2006.

[5] Chen Y Q, Wang X D, Xu H X.Antiperiodic solutions for semilinear evolution equations[J]. J Math Anal Appl, 2002,273:627-636.

[6] Chen Y Q.Antiperiodic solutions for semilinear evolution equations[J]. J Math Anal Appl,2006,315:337-348.

[7] Chen Y Q,Cho Y J,  Regan D O.Antiperiodic solutions for evolution equations with mapping in class(S+)[J].Math Nachr, 2005,278:335-362.

[8] Chen Y Q,Cho Y J, Jung J S. Antiperiodic solutions for semilinear evolution equations[J]. Mathematical and Computer Modeling, 2004,40:1123-1130.

[9] Chen Y Q,Cho Y J, Wang L. Antiperiodic boundary value problems for impulsive differential equations[J]. Inter J Comput Appl Math,2006(1):9-16.

[10] Chen Y Q, Nieto J J, O'Regan D.Antiperiodic solutions for fully nonlinear firstorder differential equations[J].Math Computer Modelling, 2007,46:1183-1190.

[11] Franco D,Nieto J J. First order impulsive ordinary differential equations with antiperiodic and nonlinear boundary conditions[J].Nonlinear Anal,2000,42:163-173.

[12] Franco D,Nieto J J, O'Regan D. Antiperiodic boundary value problem     for nonlinear first order  ordinary differential equations[J]. Math Inequal Appl,2003,6:477-485.

[13] Franco D,Nieto J J, O'Regan D.Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions[J]. Appl Math Comput,2004,153:793-802.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!