广东工业大学学报 ›› 2014, Vol. 31 ›› Issue (4): 54-59.doi: 10.3969/j.issn.1007-7162.2014.04.010

• 综合研究 • 上一篇    下一篇

基于决策树组合分类器的气温预测

李俊磊,滕少华,张巍   

  1. 广东工业大学 计算机学院,广东 广州,510006
  • 收稿日期:2014-04-16 出版日期:2014-12-28 发布日期:2014-12-28
  • 作者简介:李俊磊(1988-),男,硕士研究生,主要研究方向为数据挖掘、协同计算.
  • 基金资助:

    教育部重点实验室基金资助项目(110411);广东省自然科学基金资助项目 (10451009001004804, 91510090010 00007);广东省科技计划项目(2012B091000173);广州市科技计划项目(2012J5100054);韶关市科技计划项目(2010CXY/C05)

Prediction of  Atmospheric Temperature Based on Multi-classifiers of Decision Tree

Li Jun-lei, Teng Shao-hua, Zhang Wei   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2014-04-16 Online:2014-12-28 Published:2014-12-28

摘要: 气象数据挖掘是近年来研究的热点,组合分类器能够实现协同计算以提高效率和准确性,就此本文采用数据挖掘方法中的决策树组合分类器对某地气象进行了气温预测,主要依据C4.5经典算法、Bagging集成方法构建组合决策树,并加入协同的思想建立了预测气温的决策树协同分析模型.实验表明,基于Bagging的决策树协同模型对于局部区域的气温预测具有较高的准确率.

关键词: Bagging;C4.5算法;组合分类器;协同;气温预测

Abstract: Meteorological data mining has been a hot research spot recently. Combined classifiers can be used in collaborative computing to improve the efficiency and accuracy. Based on C4.5 classic algorithm and the bagging integrated method, it constructed a cooperative decision tree, and proposed a decision tree model for multi-classifiers to predict the air temperature. Experimental results show that the cooperative model for the prediction of local area atmospheric temperature, based on multi-classifiers of the decision tree, has higher accuracy than others.

Key words: Bagging; C4.5 algorithm; multi-classifiers; cooperative; air temperature prediction

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!