广东工业大学学报 ›› 2014, Vol. 31 ›› Issue (4): 69-73.doi: 10.3969/j.issn.1007-7162.2014.04.013

• 综合研究 • 上一篇    下一篇

解抛物型方程的八点隐式差分格式

周敏,高学军,董超   

  1. 广东工业大学 应用数学学院, 广东 广州 510520
  • 收稿日期:2013-05-31 出版日期:2014-12-28 发布日期:2014-12-28
  • 作者简介:周敏(1984-),女,硕士研究生, 主要研究方向为微分动力系统.
  • 基金资助:

    广东省自然科学基金资助项目(S2011040004273;S2011010005029)

The Implicit Difference Scheme of Eight Points for Solving the Parabolic Equations

Zhou Min, Gao Xue-jun, Dong Chao   

  1. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520,China
  • Received:2013-05-31 Online:2014-12-28 Published:2014-12-28

摘要: 针对一维抛物型方程的初边值问题, 在网格剖分的基础上, 先用待定系数法构造出了一个含有多个参数的差分格式, 然后利用Taylor级数展开法,并结合偏微分方程本身的特性在xjtn处展开, 使其达到一定的精度, 最后解方程确定参数. 按照这样的方法, 构造了一个两层八点隐式差分格式, 其格式的截断误差为O(τ3+h5), 稳定性条件是0.001<r<0.231或0.236<r<0.772, 并给出了相应的数值算例验证了方法的可行性和有效性.

关键词: 一维抛物型方程; 隐式差分格式; 截断误差; 稳定性条件

Abstract: Solutions to the initial boundary value problem with onedimension parabolic equations were presented. On the basis of mesh,an implicit difference scheme with multiple variables was given by the undetermined parameters method. Then, it was expanded with Taylor series by combining the characteristics of partition differential equations in xjtn, to reach certain accuracy. Finally, parameters of the equation were determined. Via this method, an implicit difference scheme of two layers and eight points for solving parabolic equation was constructed. The order of truncation error was O(τ3+h5), and the stability condition was 0.001<r<0.231 or 0.236<r<0.772. The corresponding numerical example has been given to demonstrate the feasibility and effectiveness of the proposed method.

Key words: one-dimension parabolic equation; implicit difference scheme; order of truncation error; stability condition

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!