广东工业大学学报 ›› 2014, Vol. 31 ›› Issue (3): 1-7.doi: 10.3969/j.issn.1007-7162.2014.03.001

• 综合研究 •    下一篇

可调多趟聚类挖掘在电信数据分析中的应用

Teng Shao-hua, Wu Hao, Li Ri-gui, Zhang Wei, Liu Dong-ning, Liang Lu   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • 收稿日期:2014-07-10 出版日期:2014-09-30 发布日期:2014-09-30
  • 作者简介:滕少华(1962-),男,教授,博士,CCF会员(E200006870S),主要研究方向为协同计算、数据挖掘、网络安全和大数据.
  • 基金资助:

    国家自然科学基金资助项目(61104156, 61370229);国家科技支撑计划项目 (2013BAH72B01);教育部重点实验室基金资助项目(110411);广东省自然科学基金资助项目(10451009001004804,9151009001000007);广东省科技计划项目(2012B091000173);广东省教育厅项目(粤教高函〔2013〕113号);广州市科技计划项目(2012J5100054,2013J4500028)

The Application of the Adjustable Multitimes Clustering Algorithm in Telecom Data

广东工业大学 计算机学院,广东  广州 510006   

  1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2014-07-10 Online:2014-09-30 Published:2014-09-30

摘要: 电信业务每天都产生大量数据,如何从这些数据中提取有用的信息是当今数据挖掘的难题之一.针对实际应用中存在聚类簇数难以确定、单趟聚类算法有时不能收敛到用户指定的簇数等问题,提出了可调多趟聚类挖掘方法.第1趟通过引入一个较大的K值,采用K-means聚类算法,获得K个簇,为第2趟聚类的簇数及簇中心初始值选择提供参考.经电信现网业务数据实验,本文的方法既改善了原聚类方法的局部收敛性,又能较好地适应用户的不同数据分析需求,该方法可用于不确定簇数的大数据分析中.

关键词: 电信数据, 多趟聚类, K-means聚类, 客户细分

Abstract: Huge amounts of telecom data are generated every day, so how to extract useful information from the data is one of the data mining problems. Because different applications need different clusters, sometimes a single K-means cluster algorithm cannot generate userspecified K-clusters. An adjustable multitimes clustering mining method is proposed. A big value K was used in the K-means clustering algorithm for the first time, and K clusters were obtained. They were used to select the number of the clusters and the initial centers of the clusters for the second time. The experimental results show that our method is effective, and it can be applied to mining different amounts of clusters and big data analysis.

Key words: telecom data, multitimes clustering, K-means clustering, customer subdivision

[1] 杨婷, 滕少华. 改进的贝叶斯分类方法在电信客户流失中的研究与应用[J]. 广东工业大学学报, 2015, 32(3): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!