广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (1): 58-61.

• 综合研究 • 上一篇    下一篇

在乘法扰动下延拓矩阵奇异空间的扰动界

  

  1. 茂名职业技术学院 基础部,广东 茂名 525000
  • 出版日期:2011-12-25 发布日期:2011-12-25
  • 作者简介:文伟(1962-),男,副教授,主要研究方向为矩阵理论.

Perturbation Bounds for Singular Space of Extended Matrix-under Multiplicative Perturbation

  1. Basic Courses Department,Maoming Vocational and Technical College,Maoming,Guangdong  525000,China
  • Online:2011-12-25 Published:2011-12-25

摘要: 在矩阵A和A~有相同分块的奇异值分解和乘法扰动下,对于母矩阵为A的行延拓矩阵Rk(A)与其扰动矩阵R~k(A~),使用奇异值的双分离度获得左右奇异空间的分离,研究了延拓矩阵Rk(A)与其扰动矩阵R~k(A~)的奇异空间在Frobenius范数下的扰动界.

关键词: 奇异空间;Frobenius范数;延拓矩阵;乘法扰动

Abstract: When Matrix  A and A~Matrix  have the same partition singular decomposition and multiplicative perturbations,the Extended Matrix Rk(A) with mother Matrix A and the Extended Matrix R~k(A~) with mother Matrix A~,the seperation between the left singular space and the right singular space is obtained by using double seperation degree.Furthermore,the perturbation bounds for the singular space of the Extended Matrix Rk(A) and its perturbation matrix R~k(A~) are studied under Frobenius norm.

Key words:
singular space; Frobenius norm; extended matrix; multiplicative perturbation

[1] 王震,蘭小林,蒋耀林.行(列)对称矩阵的满秩分解及其解法[J].高等学校计算数学学报,2005,S1:295-303.

[2] 邹红星,王殿军,戴琼海,等.延拓矩阵的奇异值分解[J].科学通报,2000,45(14):1560-1562.

[3] 陈小山.矩阵特征空间和奇异空间相对扰动界[J].华南师范大学学报,2005(1): 6-10.

[4] 孙继广.矩阵扰动分析[M].北京:科学出版社,1987.

[5] Li R C.Relative perturbation theory(Ⅱ),Eigenspace and singular subspace variations,SIAM[J].Matrir Anal Appl,1999(20):471-492.

[6] Davis C,Kahan W.The rotation of eigenvectors by a perturbation(Ⅲ),SIAM[J].Numer.Anal,1970(7):1-46.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!