广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (1): 68-72.

• 综合研究 • 上一篇    下一篇

基于T-S模糊建模思想的一类双人非线性非合作微分博弈的Nash均衡解

  

  1. 广东工业大学 管理学院,广东 广州 510520
  • 出版日期:2011-12-25 发布日期:2011-12-25
  • 作者简介:丘志鸿(1986-),男,硕士研究生,主要研究方向为系统模型和系统建模.
  • 基金资助:

    国家自然科学基金资助项目(70771029);广东省自然科学基金资助项目(070117)

Nash Equilibrium Solution to a Class of Two-player Non-cooperative Differential Games Based on the Thought of T-S Fuzzy Modeling

  1. School of Management,Guangdong University of Technology,Guangzhou 510520,China
  • Online:2011-12-25 Published:2011-12-25

摘要: 基于T-S模糊建模思想,利用T-S模糊建模方法,将一类双人非线性非合作微分博弈问题的模型转化为一个局部线性、整体非线性的T-S模糊系统,再利用其局部线性的特点,求出原问题的Nash均衡解的形式.

关键词: T-S模糊建模;非线性系统;微分博弈;Nash均衡解

Abstract: Based on the thought of T-S fuzzy modeling,it deals with a class of twoplayer non-cooperative differential games via the method of T-S fuzzy modeling.It converts the model into a T-S fuzzy model which is linear locally but nonlinear overall,and obtains Nash equilibrium solution via the use of the local linear characteristics.

Key words: T-S Fuzzy modeling; Nonlinear system; Differential game; Nash equilibrium solution

[1] Basar T,Olsder G J.Dynamic Noncooperative Game Theory[M].New York:Academic Press,1991.

[2] 王新辉,李晓东,杨军.基于TS模糊建模思想的多人非合作微分对策[J].计算机仿真,2009,12(26):333-341.

[3] 吴忠强,许世范,岳东.非线性系统的TS模糊建模与控制[J].系统仿真学报,2002,2(14):253-256.

[4] Starr A W,Ho Y C.Nonzerosum differential games[J].J Optim Theory Appl,1969,3(3):184-206.

[5]  Starr A W,Ho Y C.Further properties of nonzerosum differential games[J].J Optim Theory Appl,1969,3(3):207-219.

[6] 王立新.自适应模糊系统与控制设计与稳定性分析[M].北京:国防工业出版社,1995.

[7] 年晓红,杨胜跃,郭丽梅.耦合Riccati不等式组解的局部优化算法及其在微分对策中的应用[J].系统工程,2005,6(23):105-109.

[8] 年晓红,黄琳.微分对策理论及其应用研究的新进展[J].控制与决策,2004,2(19):128-133.

[9] 李荣钧.模糊多准则决策理论与应用[M].北京:科学出版社,2002.
[10] 张莲,胡晓倩,王士彬,等.现代控制理论[M].北京:清华大学出版社,2008.

[11] 曹炳元.应用模糊数学与系统[M].北京:科学出版社,2005.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!