广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (04): 22-26.doi: 10.12052/gdutxb.160142

• 综合研究 • 上一篇    下一篇

活性炭含量对PVA-SA固定化小球处理氯苯微污染废水的影响

杜青平, 陈展明, 李彦旭, 李乐, 凌嘉茵, 许燕滨   

  1. 广东工业大学 环境科学与工程学院, 广东 广州 510006
  • 收稿日期:2016-11-10 出版日期:2017-07-09 发布日期:2017-07-09
  • 作者简介:杜青平(1972–),女,教授,博士,主要研究方向为环境生物技术及环境毒理学.
  • 基金资助:

    广东省科技计划项目(2016A020221034,2014A020216039,2016A020221036,2015A020215031);广东省科技计划重大专项(2013B090200016)

Effects of Activated Carbon in Sodium Alginate and Polyvinylacohol Immobilization Pellets of Penicillium sp. on Chlorobenzene Removal

Du Qing-ping, Chen Zhan-ming, Li Yan-xu, Li Le, Ling Jia-yin, Xu Yan-bin   

  1. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2016-11-10 Online:2017-07-09 Published:2017-07-09

摘要:

以海藻酸钠(SA)、聚乙烯醇(PVA)联合作为包埋剂,包埋一株高效降解氯苯的青霉菌,分析复合凝胶小球的最佳配比及不同的活性炭添加量对包埋小球的机械强度、酸碱稳定性、传质性能及氯苯降解性能的影响.结果表明,复合凝胶小球最佳配比为w(PVA)∶w(SA)∶w(CaCl2)=6%∶2%∶2%;活性炭的加入能增强固定化小球的机械强度,且在活性炭质量分数为1%时强化效果最理想;PVA-SA小球在酸性溶液中的稳定性比在碱性溶液中高,且稳定性随着活性炭含量的增加而增强;在温度30℃、pH=6、氯苯初始质量浓度为30 mg/L的条件下,不同活性炭含量的固定化小球均能提高氯苯降解速度,活性炭质量分数为1%、1.5%时在72 h内能达到80%以上的氯苯去除率.综合评价,在固定化微生物过程中添加1%活性炭,达到改善所得包埋小球的综合性能的目的,提高降解氯苯速率.

关键词: 微污染, 固定化技术, PVA-SA, 活性炭, 性能, 氯苯去除

Abstract:

By embedding activated carbon and Penicillium sp. with the combination of sodium alginate (SA) and polyvinyl alcohol (PVA) as embedding agents, the ingredients of compound gel balls were optimized, and the associated mechanical strength, environmental stability, mass transfer performance and chlorobenzene removal under different levels of activated carbon contents were also assessed. Experimental results showed that the optimal mix ratio of the three compounds for composite gel beads was w(PVA)∶w(SA)∶w(CaCl2)=6%∶2%∶2%. The addition of activated carbon was showed to be able to enhance the mechanical strength of immobilized pellets and the maximum mechanical strength was observed at the addition of 1% activated carbon. The stability of PVA-SA balls under acidic condition was higher than that of alkaline condition and their stability was increased with the increase of activated carbon contents. The addition of activated carbon increased the removal ability of chlorobenzene under the conditions of 30 ℃, pH 6, chlorobenzene initial concentration of 30 mg/L. The removal percentage of chlorobenzene reached over 80% when activated carbon content was 1% or 1.5% at 72 h. In conclusion, the addition of 1% activated carbon in the immobilization PVA-SA balls of Penicillium sp. improved the overall performance of the embedded pellets, with significant increase in mechanical strength, environmental stability, mass transfer performance and removal efficiency of chlorobenzene in water.

Key words: micro-contamination, immobilization, PVA-SA, activated carbon, capability, chlorobenzene removal

中图分类号: 

  • X703.1

[1] Simonetta C. Persistent organic pollutants in edible fish: a human and environmental health problem [J]. Microchemical Journal, 2005, 79(1-2): 115-123.
[2] Michalowicz J, Mokra K, Rosiak K, et al. Chlorobenzenes, lindane and dieldrin induce apoptotic alterations in human peripheral blood lymphocytes (in vitro study) [J]. Environmental Toxicology and Pharmacology, 2013, 36(3): 979-988.
[3] Feltens R, Moegel I, Roeder S C, et al. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro[J]. Toxicology and Applied Pharmacology, 2010, 242(1): 100-108.
[4] Nagyeri G, Valkusz Z, Radacs M, et al. Behavioral and endocrine effects of chronic exposure to low doses of chlorobenzenes in Wistar rats [J]. Neurotoxicology and Teratology, 2012, 34(1): 9-19.
[5] USEPA. National pollutant discharge elimination system, in Code of Federal Regulations[R].USA: USEPA, 1998.
[6] 王静萱, 李军, 张振家, 等. 固定化包埋颗粒对二级出水深度脱氮特性研究[J]. 环境科学学报, 2013, 02: 389-394.WANG J X, LI J, ZHANG Z J, et al. Immobilization embedding particles on secondary effluent from advanced nitrogen removal characteristics [J]. Journal of Environmental Sciences, 2013, 02: 389-394.
[7] Maryskova M, Ardao I, Garcia-Gonzalez CA, et al. Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals [J]. Enzyme and microbial Technology, 2016, 89: 31-38.
[8] Cao S G, Liu Z F, Hu B H, et al. Stabilization of electrospun poly(vinyl alcohol) nanofibrous mats in aqueous solutions [J]. Chinese Journal of Polymer Science, 2010, 28(5): 781-788.
[9] Zhao G H, Liu Y, Fang C L, et al. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film [J]. Polymer Degradation and Stability, 2006, 91(4): 703-711.
[10] Li T, Ren Y, Wei C H, et al. Study on Preparation and Properties of PVA-SA-PHB-AC Composite Carrier for Microorganism Immobilization [J]. Journal of Applied Polymer Science, 2014, 131(3): 1082-1090.
[11] Gong H J, Chen Z Z, Fan Y M, et al. Surface modification of activated carbon for siloxane adsorption [J]. Renewable Energy, 2015, 83: 144-150.
[12] Tian Y H, Lan X Z, Song Y H, et al. Preparation and characterization of formed activated carbon from fine blue-coke[J]. International Journal of Energy Research. 2015, 39(13): 1800-1806.
[13] Ma X J, Yang H M, Yu L L, et al. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation [J]. Materials. 2014, 7(6): 4431-4441.
[14] 张占生, 李彦旭, 杜青平, 等. 一株苯系物降解真菌筛选及降解特性[J]. 中国生物工程杂志, 2013, 33(1): 47-52.ZHANG Z S, LI Y X, DU Q P, et al. Isolation of fungal strain of degrading BTEX and its degradation characteristics [J]. China Biotechnology, 2013, 33(1): 47-52.
[15] 赵玉强. PVA/SA/ST复合凝胶微球的制备及性能研究[D]. 成都: 西南交通大学生命科学与工程学院, 2009.
[16] 聂春芬. 固定化活性污泥实现短程硝化反硝化处理畜禽废水[D]. 成都: 四川农业大学资源环境学院, 2012.
[17] 周明辉, 荚荣. 聚乙烯醇与海藻酸钠对玫瑰色微球菌的固定化及其脱氮性能的优化[J]. 环境工程学报, 2015, 11: 5415-5420.ZHOU M H, JIA R. Polyvinyl alcohol and sodium alginate immobilized Rosy Micrococcus and optimization of nitrogen removal performance [J]. 2015, 11: 5415-5420.

[1] 邱俊豪, 程志键, 林国怀, 任鸿儒, 鲁仁全. 具有执行器故障的非线性系统指定性能控制[J]. 广东工业大学学报, 2023, 40(02): 55-63.
[2] 方志雄, 易双萍, 周一轩, 赵韦人. 双钙钛矿结构Sr2GdSbO6:Eu3+荧光粉的制备与表征[J]. 广东工业大学学报, 2023, 40(02): 88-94.
[3] 孙晓龙, 彭钦源, 黄振英, 朱勇强, 朱芸楚, 徐勤. 延衰改性沥青基础性能与热物性能表征[J]. 广东工业大学学报, 2023, 40(02): 95-102.
[4] 黄金花, 鲁圣国. 多孔黄豆对中性红染料及重金属的去除性能研究[J]. 广东工业大学学报, 2022, 39(06): 107-113.
[5] 戴美玲, 程成, 吴智文, 卢镇伟, 卢杰迅, 杨坚, 杨福俊. 开孔空心球结构的准静态压缩力学行为[J]. 广东工业大学学报, 2022, 39(04): 83-90,97.
[6] 冯德銮, 肖雪莉, 梁仕华, 朱翀. 微生物固化花岗岩残积土耐崩解性能及抗冲刷性能研究[J]. 广东工业大学学报, 2022, 39(02): 99-104.
[7] 翟可仪, 叶明, 张耀文, 姜海波, 肖杰, 梅塨镛, 黄梓槺. ECC与钢筋黏结性能试验研究[J]. 广东工业大学学报, 2022, 39(02): 120-124.
[8] 梁志颖, 陈健勇, 陈颖, 罗向龙, 杨智, 梁颖宗. 多流程分液板式冷凝器的变工况性能研究[J]. 广东工业大学学报, 2022, 39(01): 99-106.
[9] 孙晓龙, 袁俊申, 于华洋, 覃潇, 尹应梅. 反光标线材料及其逆反射性能影响因素研究进展[J]. 广东工业大学学报, 2021, 38(04): 81-94.
[10] 何淋, 柯秀芳, 张国庆, 李新喜. 导热硅胶/相变材料复合组件在电池热管理中的应用[J]. 广东工业大学学报, 2021, 38(01): 104-110.
[11] 郑晓生, 罗俊伟, 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 采用R1234ze(E)/R245fa的非共沸混合工质有机朗肯循环系统实验研究[J]. 广东工业大学学报, 2020, 37(03): 114-120.
[12] 鲁重瑞, 赵韦人, 廖子锋, 宋静周, 夏梦龙, 杨焕鑫. 铕掺杂NASICON结构红色荧光粉制备和发光性能[J]. 广东工业大学学报, 2020, 37(01): 27-33.
[13] 陈卓明, 熊哲. 橡胶混凝土界面与性能改进研究进展及分析[J]. 广东工业大学学报, 2019, 36(06): 92-98.
[14] 邱观福, 罗向龙, 陈健勇, 杨智, 陈颖. 考虑环境温度变工况的分液冷凝有机朗肯循环系统优化设计[J]. 广东工业大学学报, 2019, 36(06): 99-104,110.
[15] 禹智涛, 潘浩, 贺绍华. 预应力轴压比对节段拼装桥墩力学性能影响分析[J]. 广东工业大学学报, 2019, 36(04): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!