广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (04): 47-51.doi: 10.12052/gdutxb.170057

• 综合研究 • 上一篇    下一篇

极化SAR影像相干斑滤波方法的评测研究

孙盛1, 邓少平2   

  1. 1. 广东工业大学 计算机学院, 广东 广州 510006;
    2. 广东省中山市基础地理信息中心, 广东 中山 528403
  • 收稿日期:2017-03-15 出版日期:2017-07-09 发布日期:2017-07-09
  • 作者简介:孙盛(1980–),男,讲师,博士,主要研究方向为遥感影像处理.
  • 基金资助:

    国家自然科学基金资助项目(41501362)

Evaluation of the Speckle Filters for the Polarimetric Synthetic Aperture Radar Image

Sun Sheng1, Deng Shao-ping2   

  1. 1. School of Computers, Guangdong University of Technology, Guangzhou 510006, China;
    2. Geomatics Center of Zhongshan City, Zhongshan 528403, China
  • Received:2017-03-15 Online:2017-07-09 Published:2017-07-09

摘要:

针对极化SAR影像相干斑滤波器的性能评测,引入了涵盖极化域、空间域信息保持的统一评测指标.以超高分辨率SAR影像为实验数据,给出了极化SAR影像极化信息保持的评测指标及流程以及空间域信息保持的评测指标及流程.引入绝对相对误差计算方法,完成数值型参数的评测.以UAVSAR系统提供的超高分辨率数据为测试对象,完成了6种经典滤波器的性能测定.性能测定的结果给后续极化遥感应用者提供了量化的参考性依据.

关键词: 极化合成孔径雷达, 相干斑滤波, 极化域信息, 空间域信息

Abstract:

To evaluate the performances of speckle filters for polarimetric synthetic aperture radar images, a unified evaluation framework that includes both the polarimetric information and spatial information is established. The very high resolution SAR image will be employed as the experimental data. The polarimetric and spatial indicators are listed, and then the procedure for applying the evaluation is demonstrated. The absolute relative bias is suggested for the purpose of evaluating the parameters. The very high resolution image provided by UAVSAR system is designated as the experimental data and then six classic speckle filters have been tested in respect of their performances. The results of the evaluation, as an important reference, are beneficial to the users who will design some polarimetric applications therewith.

Key words: polarimetric synthetic aperture radar, speckle filtering, polarimetric information, spatial information

中图分类号: 

  • TN911.73

[1] LACHAISE M, FRITZ T. Update of the interferometric processing algorithms for the Tan-DEM-X high resolution DEMs [C].// Proceedings of 11th European Conference on Synthetic Aperture Radar, Berlin: VDE, 2016: 1-4.
[2] KIM D, HENSLEY S, YUN S, et al. Detection of durable and permanent changes in urban areas using multitemporal polarimetric UAVSAR data [J]. IEEE Geoscience and Remote Sensing Letters, 2016; 13(2): 267-271.
[3] KOBAYASHI T, UMEHARA T, UEMOTO J, et al. Damage detection after earthquake by an X-band high resolution airborne SAR [C]// Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba: IEEE, 2013: 446-447.
[4] SOLARO G, DE NOVELLIS V, CASTALDO R, et al. Coseismic fault model of Mw 8.32015 illapel earthquake (Chile) retrieved from multi-orbit sentinel1-A DInSAR measurements [J]. Remote Sensing, 2016; 8(4): 323.
[5] 杨劲松, 王隽, 任林. 高分三号卫星对海洋内波的首次定量遥感[J]. 海洋学报, 2017; 39(1): 148.YANG J S, WANG J, REN L. The first quantitative remote sensing to the oceanic internal waves using GF-3 satellite [J]. HaiYang Xuebao, 2017; 39(1): 148.
[6] LEE J S, AINSWORTH T L, WANG Y T, et al. Polarimetric SAR speckle filtering and the extended sigma filter [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015; 53(3): 1150-1160.
[7] 孙盛, 刘仁峰, 温雯, 等. 张量扩散滤波在极化SAR图像降噪中的应用[J]. 科学技术与工程, 2015; 15(18): 190-194.SUN S, LIU R F, WEN W, et al. Application of tensor-diffusion based filter in despeckle of polarimetric synthetic aperture radar imagery [J]. Science Technology and Engineering, 2015; 15(18): 190-194.
[8] D’HONDT O, GUILLASO S, HELLWICH O. Iterative bilateral filtering of polarimetric SAR data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013; 6(3): 1628-1639.
[9] 王华, 罗丽芳. 利用InSAR相干性提取青藏高原湖泊边界[J]. 广东工业大学学报2014; 31(1): 118-120.WANG H, LUO L F. Identifying lake boundaries in Tibet using InSAR coherence [J]. Journal of Guangdong University of Technology, 2014; 31(1): 118-120.
[10] LEE J S, POTTIER E. Polarimetric radar imaging: from basics to applications [M]. Boca Raton: CRC Press, 2009: 159-162.
[11] IDOL T, HAACK B, MAHABIR R. Radar speckle reduction and derived texture measures for land cover/use classification: a case study [J]. Geocarto International, 2017; 32(1): 18-20.
[12] HOSSEINIA R, ENTEZARIA I, HOMAYOUNIA S, et al. Classification of polarimetric SAR images using support vector machines [J]. Canadian Journal of Remote Sensing, 2011, 37(2): 220-233.
[13] PANIGRAHI R K, MISHRA A K. Entropy based landcover classification using polarimetric SAR images and GMM method [C]// Proceedings of IEEE Applied Electromagnetic Conference, Kolkata: IEEE, 2011:1-4.
[14] LEE J S, GRUNES M R, POTTIER E, et al. Unsupervised terrain classification preserving scattering characteristics [J]. IEEE Transactions on Geoscience and Remote Sensing, IEEE, 2004, 42(4): 722-731.
[15] SINGHA G, YAMAGUCHIA Y, PARKA S E, et al. Evaluation of modified four-component scattering power decomposition method over highly rugged glaciated terrain [J]. Geocarto International, 2012, 27(2): 139-151.
[16] ZHANG T, HAN P, WANG X L, et al. Automatic target detection in search and rescue based on Yamaguchi polarimetric decomposition [C]// In Proceedings of IEEE CIE International Conference on Radar, Chengdu: IEEE, 2011, 490-493.
[17] YAMAGUCHIA Y, YAMAMOTO Y, YAMADA H, et al. Classification of terrain by implementing the correlation coefficient in the circular polarization basis using X-Band POLSAR data [J]. IEICE Transactions on Communications, 2008, E91-B(1): 297-301.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!