摘要: 利用经验模态分解(Empirical Mode Decomposition ,简称EMD)方法对由两个正弦线性叠加而成的信号进行分离处理,研究正弦信号的频率和振幅对EMD分离效果的影响.通过多组实验得出,两正弦信号的频率相差越大或振幅相差越小, EMD分离效果越明显.
[1]Elias M.Fourier Ananlysis[M].北京:世界图书出版公司,2006:18-153.[2] Mallat S,Zhang Z.Matching pursuit with timefrequency dictionaries[J].IEEE Trans on PAMI,1993,15(12):3397-3415.[3] Yang Zhihua.A new definition of the intrinsic mode function[J].Engineering and Technology,2009,60(8620):822-855.[4] 聂祥飞. 基于经验模式分解和匹配追踪的人脸检测[J].计算机工程,2007,33(14):30-32.[5] Huang N E, Shen Z. The Empirical Mode Decomposition Method and the Hilbert Spectrum Fornonlinear and Nonstationary Time Series Analysis[C]∥Proceedings of the Royal Society of London,1998,454(A):903-995.[6] Patrick F I, Gabriel Rilling, Paulo Gonalvès. Empirical mode decompositionas a filter bank[J]. IEEE Signal Processing Letters,2004,11:112-114. [7] Damerval C, Meigne S,Perrier V. A fast algorithm for bidimensional EMD[J]. IEEE Signal Processing Letters, 2005,12:701-704.[8] Wu Zhaohua,Norden E Huang. Ensemble empirical mode decomposition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41. |
No related articles found! |
|