广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (4): 38-44.

• 综合研究 • 上一篇    下一篇

分区域多目标进化算法在协同车辆路径问题中的应用

  

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 出版日期:2011-12-25 发布日期:2011-12-25
  • 作者简介:谢桂芩(1983-),女,硕士研究生,主要研究方向为多目标进化算法.
  • 基金资助:

    广东省自然科学基金资助项目(10251009001000002)

The Application of Multiobjective Evolutionary Algorithm in Collaborative Vehicle Routing

  1. Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520,China)
  • Online:2011-12-25 Published:2011-12-25

摘要: 在以原有的车辆配送总费用最小化为目标的基础上,兼顾顾客的满意度目标,建立带有时间窗的多物流中心协同配送的车辆路径多目标优化问题的数学模型.对建立的多目标优化问题,采用分区域多目标进化算法思想,构造了利于产生可行解的编码方式,从而提高算法的运行效率.通过算例验证了建立的模型能有效地解决协同物流配送车辆路径问题.

关键词: 协同运输;多目标优化;进化算法;车辆路径问题

Abstract: To minimize the total cost of vehicle transport and to satisfy customers, it proposed a new mathematical model for multiobjective optimization of MultiDepot collaborative vehicle routing with time windows in logistics. For the sake of this multiobjective optimization, a multiobjective evolutionary algorithm, based on decomposition, was adopted. In this algorithm, a new encoding method, which was beneficial to producing feasible individual, was presented. The efficiency of the algorithm was improved due to the perfect encoding. Finally, a test was carried out. The results show that the proposed model can solve effectively the problem of collaborative vehicle routing in logistics.

Key words: collaborative transport; multiobjective optimization; evolutionary algorithm; vehicle routing

[1] Dantzig G,Ramser J.The truck dispatching problem[J].Management Science,1959(6):80-91.

[2] 盛丽俊,周溪召. 带有时间窗的车辆路径问题优化[J].上海海事大学学报, 2007,28(4):64-68.

[3] 魏俊华,王安麟,童毅.基于需求划分的带软时间窗的路径优化方法[J].公路交通科技,2005,22(10):165-170. 

[4] 李敏,郭强,刘红丽.多车场多配送中心的物流配送问题研究[J].计算机工程与应用,2007, 43(8):202-208. 

[5] 戴树贵,陈文兰.一个多物流中心配送模型及其遗传算法[J].计算机技术与发展,2008,18(2):46-51.

[6] 覃运梅.多源点物流配送车辆调度模型探讨[J].物流科技 2010,33(9):32-36.

[7] 谢天保,雷西玲,席文玲.多物流中心协同配送车辆调度模型研究[J].计算机工程与应用,2010,46(29):203-211.

[8] Liu Hailin,Li Xueqiang.The multiobjective evolutionary algorithm based on determined weights and subregional search[C]∥ IEEE Congress on Evolutionary Computation (CEC09). Norway: [s.n.],2009: 1028-1934.

[9] 李学强.多目标最优化进化算法[D].广东工业大学应用数学学院,2009.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!