广东工业大学学报 ›› 2011, Vol. 28 ›› Issue (4): 55-58.

• 综合研究 • 上一篇    下一篇

收敛速度;误差迭代;神经网络;仿真; PID控制

  

  1. 广东工业大学 应用数学学院,广东 广州 510520
  • 出版日期:2011-12-25 发布日期:2011-12-25
  • 作者简介:卢萍(1986-),女,硕士研究生,主要研究方向为系统的智能控制和优化

Research and Improvement of PID Neural Network

  1. Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
  • Online:2011-12-25 Published:2011-12-25

摘要: 针对PID神经网络能根据控制效果进行在线自学习调整及具有无静差控制效果等特点,通过分析PIDNN控制算法存在的局限性,提出了对误差进行分级的改进算法.对改进的算法进行仿真,结果证明该方法能有效地改善网络的性能.

关键词: 收敛速度;误差迭代;神经网络;仿真; PID控制

Abstract: Considering that the neural network of Proportion Integration Differentiation (PID)can adjust online selflearning and has no static errors, it proposed an improved algorithm for classification of errors by analyzing the defects of the control method. Simulation was done for this improved algorithm. The results indicate that the improved algorithm can improve the performance of the network effectively.

Key words: convergent velocity; iteration error; neural network; simulation; proportion integration differentiation (PID)

[1] 舒怀林.PID神经元网络及其控制系统[M].北京:国防工业出版社,2006.

[2] 李文峰,刘军营,盛蕾.一种改进的基于神经网络模式的PID控制研究[J].系统仿真技术,2007,3(4): 217-220.

[3] 孙立雷,朱玮,王春阳.基于改进BP神经网络的优化PID控制器应用研究[J].仪器仪表学报,2006,27(12):388-390.

[4] 蒋宗礼.人工神经网络导论[M].北京:高等教育出版社,2005.

[5] 胡伍生.神经网络理论及其工程应用[M].北京:测绘出版社,2006. 

[6] 毕长春, 李柠, 黄道. 蓄热式加热炉钢温预报与炉温优化设定研究[J]. 自动化学报, 2004,30(3): 476-480.

[7] 翟尧杰. 嵌入式PID神经网络调节器的研究[D]. 广州大学机械与电气工程学院, 2010.

[8] 刘金琨. 先进PID控制MATLAB仿真[M]. 2版.北京: 电子工业出版社,2006.

[9] 宋滨, 谷丽娜. 基于神经网络的PID控制[J]. 青岛大学学报,2001,6(3):90-91.
[10] 王洪东,李丽,白金泉. MATLAB在控制工程中的应用[J].控制工程,2003,10(3):273-275.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!