广东工业大学学报 ›› 2012, Vol. 29 ›› Issue (3): 23-27.doi: 10.3969/j.issn.1007-7162.2012.03.004

• 可拓论坛 • 上一篇    下一篇

可拓集合运算的矩阵表示

李晓琳,邱卫根   

  1. 广东工业大学 计算机学院,广东 广州 510090
  • 收稿日期:2011-10-19 出版日期:2012-09-20 发布日期:2012-09-20
  • 作者简介:李晓琳(1987-),女,硕士研究生,主要研究方向为人工智能、CPS理论及其应用.

The Matrix Representation of the Extension Set Operation

Li XiaoLin, Qiu Weigen   

  1. Faculty of Computer Science,Guangdong University of Technology,Guangzhou 510090,China
  • Received:2011-10-19 Online:2012-09-20 Published:2012-09-20

摘要: 研究了可拓集集合运算的矩阵表示问题.首先在可拓集中定义了一类交、并、补运算并证明其满足一系列性质,然后将论域集限定在有限集范畴,引入可拓关系的矩阵表示,讨论了复合可拓关系、可拓变换及其可拓等价的性质.

关键词: 可拓集合;关联函数;矩阵运算;可拓等价;可拓变换

Abstract: The extension set is a new set approach to the resolution of the contradictory and noncompatible problems. It mainly investigates the matrix representation of the extension set operation. First, some operations such as set intersect ∩、set union ∪ and set complement C, based on the max and min of the absolute value, were introduced to extension sets,and their serial properties were also proved. Then, the matrix representation of extension transformations was defined on the finite extension set universe, and some properties of the composition extension relations, extension transformation and extension equivalence were discussed.

Key words: extension sets;correlated function;extension matrix;extension equivalence;extension transformation

[1] 蔡文,杨春燕,何斌.可拓逻辑初步[M].北京:科学出版社,2003.

[2] 杨春燕,蔡文.可拓工程[M].北京:科学出版社,2007.

[3] 杨春燕,蔡文.可拓集合的新定义[J].广东工业大学学报,2001,18(1):59-60. 

[4] 朱剑英.智能系统非经典数学方法[M].武汉:华中科技大学出版社,2001.

[5] 胡宝清,何娟娟.区间论域上的区间可拓集及其关联函数[J].广东工业大学学报,2001,18(1):48-54.

[6] 王洪伟,吴家春,蒋馥.基于可拓集的决策模型研究[J].计算机科学,2003,30(8):130-133. 

[7] 王静,张健沛,杨静,等.动态描述逻辑的可拓集合扩展[J].计算机科学,2009,36, (3):150-152. 

[8] 苏楠.基于可拓逻辑的产品族配置设计方法[D].浙江工业大学机电工程学院,2009.

[9] 王培承.可拓学方法在医药目标市场选择中的应用研究[D].山东大学数学系,2009.

[10]李卫华.Agent协助建立矛盾问题的可拓模型研究[J].数学的实践与认识,2009,39(4):173-177. 
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!