广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (04): 45-50.doi: 10.12052/gdutxb.170140
彭嘉恩1, 邓秀勤1, 刘太亨1, 刘富春2, 李文洲1
Peng Jia-en1, Deng Xiu-qin1, Liu Tai-heng1, Liu Fu-chun2, Li Wen-zhou1
摘要: 为了提高隐语义模型在数据稀疏情况下推荐结果的质量,提出一种带有社交正则化项和标签正则化项的隐语义模型.根据用户社交网络和物品标签的信息,设计出描述用户和物品概况的正则化项,并利用用户对物品的历史评分计算得到用户评分偏好,将这三项引入矩阵分解目标函数中,进一步约束目标函数,最后通过梯度下降法去优化模型参数,得到推荐结果.为了验证算法的有效性,在Last.fm数据集上进行实验,实验结果表明,本文算法的推荐质量优于其他传统推荐算法.
中图分类号:
[1] MA T, ZHOU J, TANG M, et al. Social network and tag sources based augmenting collaborative recommender system[J]. Ieice Transactions on Information & Systems, 2015, 98(4):902-910. [2] SHAMBOUR Q, LU J. An effective recommender system by unifying user and item trust information for B2B applications[J]. Journal of Computer and System Science, 2015, 81(7):1110-1126. [3] ZHENG N, LI Q. A recommender system based on tag and time information for social tagging systems[J]. Expert Systems with Applications, 2011, 38(4):4575-4587. [4] MA H, ZHOU D, LIU C, et al. Recommender systems with social regularization[C]//Forth International Conference on Web Search and Web Data Mining. Hong Kong:ACM, 2011:287-296. [5] LIU X, ABERER K. SoCo:A social network aided context-aware recommender system[C]//International Conference on World Wide Web. Rio de Janeiro:ACM, 2013:781-802. [6] MA H, KING I, LYU M R. Learning to recommend with social trust ensemble[C]//International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston:ACM, 2009:203-210. [7] MA H, KING I, LYU M R. Learning to recommend with explicit and implicit social relations[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-19. [8] QIAN F, ZHAO S, TANG J, et al. SoRS:social recommendation using global rating reputation and local rating similarity[J]. Physica A Statistical Mechanics & Its Applications, 2016, 461(10):61-72. [9] KIM K R, MOON N M. Recommender system design using movie genre similarity and preferred genres in Smart Phone[J]. Multimedia Tools and Applications, 2012, 61(1):87-104. [10] CHOI S M, KO S K, HAN Y S. A movie recommendation algorithm based on genre correlations[J]. Expert Systems with Applications, 2012, 39(9):8079-8085. [11] MA T, SUO X, ZHOU J, et al. Augmenting matrix factorization technique with the combination of tags and genres[J]. Physica A:Statistical Mechanics & Its Applications, 2016, 461(9):101-116. [12] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37. [13] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]//International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada:Curran Associates Inc. 2007:1257-1264. [14] 谭学清, 蔡军, 罗琳. 基于改进的LSI标签语义检索书目系统[J]. 图书馆学研究, 2014,(11):67-72.TAN X Q, CAI J, LUO L. The tag semantic retrieval of bibliography system based on the improved LSI[J]. Research on Library Science, 2014,(11):67-72. [15] CANTADOR I, BRUSILOVSKY P, KUFLIK T. Proceedings of the 2nd international workshop on information heterogeneity and fusion in recommender systems (HetRec 2011):27th October 2011, Chicago, IL, USA[J]. Soins Psychiatrie, 2011,(232):5-6. [16] 卢露, 魏登月. 一种基于隐语义模型的协同过滤算法[J]. 微电子学与计算机, 2015,(2):73-75.LU L, WEI D Y. A collaborative filtering algorithm based on latent factor model[J]. Microelectronics & Computer, 2015,(2):73-75. |
[1] | 胡晓敏, 龙祖涛, 李敏. 基于用户分层的多目标推荐算法[J]. 广东工业大学学报, 2023, 40(01): 10-18. |
[2] | 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43. |
[3] | 饶东宁, 王军星, 魏来, 王雅丽. 并行最小割算法及其在金融社交网络中的应用[J]. 广东工业大学学报, 2018, 35(02): 46-50. |
[4] | 胡惠成, 陈平华. 一种融合隐式信任关系的推荐算法[J]. 广东工业大学学报, 2017, 34(03): 43-48. |
[5] | 饶东宁, 温远丽, 魏来, 王雅丽. 基于Spark平台的社交网络在不同文化环境中的中心度加权算法[J]. 广东工业大学学报, 2017, 34(03): 15-20. |
[6] | 王晓彤. 基于PageRank的微博用户影响力度量[J]. 广东工业大学学报, 2016, 33(03): 49-54. |
|