广东工业大学学报 ›› 2018, Vol. 35 ›› Issue (06): 49-56.doi: 10.12052/gdutxb.180065
刘勇健, 伍建胜, 谢治堃
Liu Yong-jian, Wu Jian-sheng, Xie Zhi-kun
摘要: 软土的含水特性和微观结构是决定其物理力学性质的主要因素. 以南沙软土为研究对象,运用核磁共振和扫描电子显微镜两种微观结构试验方法,获取了软土的弛豫时间T2谱图和扫描电子显微镜图像,总结了两种软土(淤泥和淤泥质土)的水相分布和孔径分布规律. 研究表明,南沙软土的T2分布曲线呈双峰型,土中存在两种状态的水分,第一种状态水超过质量的99%,孔隙多、孔径小,孔径分布主要集中在0.1~20 μm的区间. 南沙软土常见的微观结构类型为絮状结构、蜂窝结构和凝块结构3类. 计算了平均孔隙半径、平均孔隙面积、面孔隙率、孔隙形状因子和孔隙分维数等微观结构参数. 最后,对比分析了两种测试方法和应用中需注意的几个问题.
中图分类号:
[1] 刘勇健, 李彰明. 软土物理力学性质指标与微结构参数的灰色关联——神经网络模型[J]. 岩土力学, 2011, 32(4):1018-1024 LIU Y J, LI Z M. Grey-relation analysis and neural networks model for relationship between physico-mechanical indices and microstructure parameters of soft soils[J]. Rock and Soil Mechanics, 2011, 32(4):1018-1024 [2] 陈晓平, 黄国怡, 梁志松, 等. 珠江三角洲软土特性研究[J]. 岩石力学与工程学报, 2003, 21(1):137-141 CHEN X P, HUANG G Y, LIANG Z S, et al. Study on soft soil properties of the Pearl River Delta[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 21(1):137-141 [3] 杨利柯, 汪益敏. 广州南沙区软土分布特征及处理对策研究[J]. 路基工, 2016, 185:9-13 YANG L K, WANG Y M. Research on distributional Characteristics and Treatment Measures of Soft Soil in Nansha District, Guangzhou[J]. Subgrade Engineering, 2016, 185:9-13 [4] 胡瑞林, 官国琳, 李向东, 等. 黏性土微观结构定量模型及其工程地质特征研究[M]. 北京:地质出版社, 1995. [5] 张先伟, 孔令伟, 郭爱国. 基于SEM和MIP试验结构性黏土压缩过程中微观孔隙的变化规律[J]. 岩石力学与工程学报, 2012, 31(2):406-412 ZHANG X W, KONG L W, GUO A G. Evolution of microscopic pore of structured clay in compression process based on SEM and MIP test[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2):406-412 [6] 徐日庆, 徐丽阳, 段景川, 等. 软黏土微观结构形貌与定量分析影响因子优化[J]. 中南大学学报(自然科学版), 2016, 47(8):2723-2729 XU R Q, XU L Y, DUAN J C, et al. Microstructure morphology and optimization of influencing factors in quantitative analysis of soft clay[J]. Journal of Central South University (Science and Technology), 2016, 47(8):2723-2729 [7] 张季如, 祝杰, 黄丽. 固结条件下软黏土微观孔隙结构的演化及其分形描述[J]. 水利学报, 2008, 39(4):393-400 ZHANG J R, ZHU J, HUANG L. Evolution of micro pore structure of soft clay and its fractal features under consolidation[J]. Journal of Hydraulic Engineering, 2008, 39(4):393-400 [8] SHI B, LI S L. Quantitative approach on SEM images of microstructure of clay soils[J]. Science in China (Series B), 1995, 38(6):741748 [9] 李彰明, 曾文秀, 高美连. 典型荷载条件下淤泥孔径分布特征核磁共振试验研究[J]. 物理学报, 2014, 63(5):366-372 LI Z M, ZENG W X, GAO M L. Nuclear magnetic resonance experimental study on the characteristics of pore-size distribution in muck under several typical loading cases[J]. Acta Physica Sinca, 2014, 63(5):366-372 [10] 田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学, 2014, 44(3):295-305 TIAN H H, WEI C F. A NMR-based testing and analysis of adsorbed water content[J]. Science in China Series E-Technological Sciences, 2014, 44(3):295-305 [11] BIRD N R A, PRESTON A R, RANDALL E W, et al. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance[J]. European Journal of Soil Science, 2005, 56:135-143 [12] 周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(4):731-737 ZHOU K P, LI J L, XU Y J, et al. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4):731-737 [13] TODORUK T R, LANGFORD C H, KANTZAS A. Pore-scale redistribution of water during wetting of air-dried soils as studied by low-field NMR relaxometry[J]. Environmental Science & Technology, 2003, 37(12):2707-2713 [14] BAYER J V, JAEGER F, SCHAUMANN G E. Proton nuclear resonance (NMR) relaxometry in soil science applications[J]. Open Magn Reson J, 2010, 3(1):15-26 [15] BIRD N R A, PRESTON A R, RANDALL E W, et al. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance[J]. European Journal of Soil Science, 2010, 56(1):135-143 [16] 周翠英, 牟春梅. 珠江三角洲软土分布及其结构类型划分[J[J]. 中山大学学报(自然科学), 2004, 3(6):81-84 ZHOU C Y, MU C M. Distribution and microstructure classification of soft clay in the Pearl River Delta[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni(Natural Science), 2004, 3(6):81-84 [17] 刘勇健, 刘湘秋, 刘雅恒, 等. 珠江三角洲软土物理力学性质对比分析[J]. 广东工业大学学报, 2013, 30(3):30-36 LIU Y J, LIU X Q, LIU Y H, et al. A contrastive analysis of the physico-mechanical properties of soft soils in the Pearl River Delta[J]. Journal of Guangdong University of Technology, 2013, 30(3):30-36 [18] 刘勇健, 符纳, 陈创鑫, 等. 三轴冲击荷载作用前后软黏土的微观结构变化研究[J]. 广东工业大学学报, 2015, 32(2):23-27 LIU Y J, FU N, CHEN C X, et al. Study on microstructure changes of soft clay before and after triaxial impact load[J]. Journal of Guangdong University of Technology, 2015, 32(2):23-27 |
[1] | 孙晓龙, 马强, 邹超, 贺绍华, 孟涛, 王娉诺. 多因素状况下热阻涂料固化特性及机理研究[J]. 广东工业大学学报, 2019, 36(01): 100-106. |
[2] | 刘勇健, 武建胜, 彭建文, 谢治堃. 三轴剪切过程中软黏土的微观结构及分形特征[J]. 广东工业大学学报, 2018, 35(04): 86-93. |
[3] | 梁仕华, 罗祺, 王蒙, 刘勇健, 尹应梅, 江志源. 石灰与水泥固化南沙锌污染软土试验研究[J]. 广东工业大学学报, 2017, 34(05): 80-85. |
[4] | 周晖, 吴俊桦. 软土固结过程中基于分形理论的孔隙微观参数研究[J]. 广东工业大学学报, 2017, 34(04): 41-46. |
[5] | 梁仕华, 戴君. 中山港地区软土物理力学指标统计分析[J]. 广东工业大学学报, 2016, 33(03): 81-87. |
[6] | 刘勇健, 刘意美, 陈创鑫, 王颖, 罗启洋, 林辉. 软土深基坑围护结构水平变形特性研究[J]. 广东工业大学学报, 2016, 33(01): 89-94. |
[7] | 刘勇健, 符纳, 陈创鑫, 刘意美, 罗启洋. 三轴冲击荷载作用前后软黏土的微观结构变化研究[J]. 广东工业大学学报, 2015, 32(2): 23-27. |
[8] | 刘勇健,刘湘秋,刘雅恒,王颖. 珠江三角洲软土物理力学性质对比分析[J]. 广东工业大学学报, 2013, 30(3): 30-36. |
[9] | 符纳,刘勇健,王颖,罗顺飞. 软土地基深基坑支护工程监测及变形特性分析[J]. 广东工业大学学报, 2013, 30(1): 38-44. |
[10] | 刘勇健1 , 李彰明1 , 伍四明2, 吴加武1. 南沙地区软土物理力学性质指标与微结构参数的统计分析[J]. 广东工业大学学报, 2010, 27(2): 21-26. |
[11] | 刘勇健, 李彰明, 林军华. 静动力排水固结法处理淤泥质软基的加固效果分析[J]. 广东工业大学学报, 2010, 27(1): 75-81. |
[12] | 罗志强; . 软基硬壳层对路基工程的作用和利用分析[J]. 广东工业大学学报, 2006, 23(2): 132-137. |
[13] | 张玉稳; 王克忠; . 江浙地区公路软基在分级荷载作用下的沉降计算[J]. 广东工业大学学报, 2003, 20(2): 46-51. |
[14] | 姜海波; 张荣辉; 禹智涛; . 新会市虎坑大桥软基病害检测[J]. 广东工业大学学报, 2002, 19(4): 50-56. |
[15] | 吕文阁; . 微观结构疲劳短裂纹生长行为的描述方法[J]. 广东工业大学学报, 1999, 16(3): 9-13. |
|