广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 20-24.doi: 10.12052/gdutxb.180189

• 综合研究 • 上一篇    下一篇

一种基于超表面的超宽带THz吸波体

熊旋1, 荣丰梅2, 文元美1   

  1. 1. 广东工业大学 信息工程学院, 广东 广州 510006;
    2. 广州京信通信有限公司, 广东 广州 510000
  • 收稿日期:2018-12-31 出版日期:2019-08-21 发布日期:2019-08-06
  • 作者简介:熊旋(1976-),女,讲师,博士,主要研究方向为超材料、新材料传感等.E-mail:xxiong@gdut.edu.cn
  • 基金资助:
    2017年中央财政支持地方高校建设项目“通信工程专业主干课程教学团队”

A Metasurface Broadband THz Absorber

Xiong Xuan1, Rong Feng-mei2, Wen Yuan-mei1   

  1. 1. School of Information Engineering in Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangzhou Jingxin Communications Co., Ltd., Guangzhou 510000, China
  • Received:2018-12-31 Online:2019-08-21 Published:2019-08-06

摘要: 设计了一种超表面宽带太赫兹(THz)吸波体,吸波单元由开裂的椭圆金属环组成,其地板和椭圆环都是金,两层金之间是介质层.椭圆环由两个轴比不同的椭圆相减而成.结果表明,当设定吸波体的最低吸收率为90%,垂直入射时,该吸波体的吸收相对带宽达到了91.7%(0.98~2.64 THz),在f=1.74 THz,其最大吸收率达99.99%.讨论了用干涉模型计算的结果,两种方法所得结果吻合较好.此外,该吸波体对TE和TM两种极化都具有广角吸收特性.与已发表的各吸波体相比较,所提出的THz吸波体几何形状简单,具有超宽带特性以及极化不敏感性.因此可用于许多应用,如太赫兹成像系统、辐射计和隐身技术等.

关键词: 太赫兹(THz), 超表面, 超宽带, 吸收, 两端开裂的不规则椭圆环

Abstract: A metasurface broadband Terahertz (THz) absorber is presented, of which the unit cell is made up of a split elliptical irregular ring, a dielectric substrate and a metallic ground. The elliptical irregular ring is composed of a smaller ellipse eroded from a bigger ellipse, and the two ellipses have different ratio of the long axis and the short axis. The simulation results show that the absorber achieves a broadband absorption from 0.98 THz to 2.64 THz, with the absorptivity over 90% at normal incidence, the maximum absorptivity being 99.99%, which are in agreement with the calculated result by using an interference model. The bandwidth is 91.7% with respect to the central frequency. Besides, the proposed absorber has property of wide angle absorptivity for both TE and TM polarizations. Compared with published designs, the proposed THz absorber has a simple geometry but a broadband and polarization insensitivity, and hence it can be used in many applications, such as THz imaging system, radiometer and stealthy technology.

Key words: Terahertz (THz), metasurface, broadband, absorption, split elliptical irregular ring

中图分类号: 

  • O441
[1] ZHANG L, ZHOU P, LU H, et al. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances[J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14:1157-1160
[2] SMITH D R, PENDRY J B, WILSHIRE M C. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792
[3] SCHURIG D, MOCK J J, SMITH D R. Electric-field-coupled resonators for negative permittivity metamaterials[J]. Applied Physics Letters, 2006, 88(4):041109
[4] SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 20008, 4(189):4184-4187
[5] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969
[6] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402
[7] 高军, 张浩, 曹祥玉, 等. 一种双频超薄吸波结构在微带天线中的应用[J]. 西安电子科技大学学报, 2015, 42(1):130-135 GAO J, ZHANG H, CAO X Y, et al. Dual-band ultra-thin metamaterail absorber and its application in reducing RCS of the microstrip antenna[J]. Journal of Xidian University, 2015, 42(1):130-135
[8] JIANG H, XUE Z, LI W, et al. Multiband polarisation insensitive metamaterial absorber based on circular fractal structure[J]. Iet Microwaves Antennas & Propagation, 2016, 10(11):1141-1145
[9] LIU Y, CHENG Y, GAO Y, et al. Multi-band terahertz two-handed metamaterial based on the combined ring and cross pairs[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(9):2129-2133
[10] ZUO W, YANG Y, XIAOXI H E, et al. An ultra-wideband miniaturized metamaterial absorber in the ultrahigh frequency range[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16:928-931
[11] CHEN J, HU Z, WANG G, et al. High-impedance surface-based broadband absorbers with interference theory[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(10):4367-4374
[12] WEN Y, MA W, BAILEY J, et al. Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption[J]. IEEE Transactions on Terahertz Science & Technology, 2015, 5(3):406-411
[13] WANG L, JIANG Y, WANG J, et al. An ultra-broadband THz absorber based on graphene[C]//International Symposium on Antennas, Propagation and Em Theory, 2017,[S. l.]:IEEE, 699-702.
[14] WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2):111-114
[15] PAN W, YU X, ZHANG J, et al. A broadband terahertz metamaterial absorber based on two circular split rings[J]. IEEE Journal of Quantum Electronics, 2017, 53(1):1-6
[16] SIM D U, KWON J H, CHONG Y J, et al. Design of electromagnetic wave absorber using periodic structure and method to broaden its bandwidth based on equivalent circuit-based analysis[J]. IET Microwaves Antennas & Propagation, 2015, 9(2):142-150
[17] FAN Y, ZHANG H C, YIN J Y, et al. An active wideband and wide-angle electromagnetic absorber at microwave frequencies[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 15:1913-1916
[18] HUANG L. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optical Letter, 2012, 37(2):154-156
[19] LIU S, CHEN H, CUI T J. A broadband terahertz absorber using multi-layer stacked bars[J]. Applied Physics Letters, 2015, 106(15):151601
[20] YOO M, LIM S. Polarization-independent and broadband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer, IEEE Transaction[J]. Antennas & Propagation, 2014, 62(5):2652-2658
[21] WANG B X, WANG G Z, WANG L L. Design of a novel dualband terahertz metamaterial absorber[J]. Plasmonics, 2016, 11(2):523-530
[22] RAHIM M K A, IBRAHIM N, MAJID H A, et al. Left-handed metamaterial structure incorporated with microstrip antenna[J]. Microwave & Optical Technology Letters, 2012, 54(12):2828-2832
[23] ZHOU J, KOSCHNY T, KAFESAKI M, et al. Size dependenceand convergence of the retrieval parameters of metamaterials[J]. Photon Nanostruct-Fundam Appl, 2008, 6(1):96-101
[24] COSTA F, MONORCHIO A. A frequency selective radome with wideband absorbing properties[J]. IEEE Transactions on Antennas & Propagation, 2012, 60(6):2740-2747
[25] HUANG L, CHOWDHURY D R, RAMANI S, et al. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers[J]. Applied Physics Letters, 2012, 101(10):101102
[26] WANG H T, CHEN W, HUANG Y, et al. Analysis of metamaterial absorber in normal and oblique incidence by using interference theory[J]. Aip Advances, 2013, 3(10):207402
[1] 王永真, 罗向龙, 陈颖, 胡嘉灏, 龚宇烈. 地热水双级吸收式制冷系统的火用经济分析[J]. 广东工业大学学报, 2015, 32(1): 42-49.
[2] 翁婷婷, 郭建维, 黎新明, 崔英德, 尹国强, 张步宁. 可聚合离子液体AMPS-TEA的合成及其交联共聚物对有机溶剂的吸收行为[J]. 广东工业大学学报, 2013, 30(4): 33-38.
[3] 谢小柱, 魏昕, 胡伟, 黄福民. 高吸收率非金属材料对CO2激光反射率的试验测定[J]. 广东工业大学学报, 2010, 27(3): 1-4.
[4] 毛凌波; 张仁元; 柯秀芳; . 纳米流体的光热特性[J]. 广东工业大学学报, 2008, 25(3): 13-17.
[5] 罗志强; . 沥青加铺层构建应力吸收层的特性分析[J]. 广东工业大学学报, 2007, 24(03): 92-95.
[6] 蒋力立; 唐新桂; 唐振方; . 退火温度对锆酸铅薄膜光学性能的影响[J]. 广东工业大学学报, 2005, 22(1): 7-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!