广东工业大学学报 ›› 2019, Vol. 36 ›› Issue (05): 20-24.doi: 10.12052/gdutxb.180189
熊旋1, 荣丰梅2, 文元美1
Xiong Xuan1, Rong Feng-mei2, Wen Yuan-mei1
摘要: 设计了一种超表面宽带太赫兹(THz)吸波体,吸波单元由开裂的椭圆金属环组成,其地板和椭圆环都是金,两层金之间是介质层.椭圆环由两个轴比不同的椭圆相减而成.结果表明,当设定吸波体的最低吸收率为90%,垂直入射时,该吸波体的吸收相对带宽达到了91.7%(0.98~2.64 THz),在f=1.74 THz,其最大吸收率达99.99%.讨论了用干涉模型计算的结果,两种方法所得结果吻合较好.此外,该吸波体对TE和TM两种极化都具有广角吸收特性.与已发表的各吸波体相比较,所提出的THz吸波体几何形状简单,具有超宽带特性以及极化不敏感性.因此可用于许多应用,如太赫兹成像系统、辐射计和隐身技术等.
中图分类号:
[1] ZHANG L, ZHOU P, LU H, et al. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances[J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14:1157-1160 [2] SMITH D R, PENDRY J B, WILSHIRE M C. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792 [3] SCHURIG D, MOCK J J, SMITH D R. Electric-field-coupled resonators for negative permittivity metamaterials[J]. Applied Physics Letters, 2006, 88(4):041109 [4] SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 20008, 4(189):4184-4187 [5] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969 [6] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402 [7] 高军, 张浩, 曹祥玉, 等. 一种双频超薄吸波结构在微带天线中的应用[J]. 西安电子科技大学学报, 2015, 42(1):130-135 GAO J, ZHANG H, CAO X Y, et al. Dual-band ultra-thin metamaterail absorber and its application in reducing RCS of the microstrip antenna[J]. Journal of Xidian University, 2015, 42(1):130-135 [8] JIANG H, XUE Z, LI W, et al. Multiband polarisation insensitive metamaterial absorber based on circular fractal structure[J]. Iet Microwaves Antennas & Propagation, 2016, 10(11):1141-1145 [9] LIU Y, CHENG Y, GAO Y, et al. Multi-band terahertz two-handed metamaterial based on the combined ring and cross pairs[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(9):2129-2133 [10] ZUO W, YANG Y, XIAOXI H E, et al. An ultra-wideband miniaturized metamaterial absorber in the ultrahigh frequency range[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16:928-931 [11] CHEN J, HU Z, WANG G, et al. High-impedance surface-based broadband absorbers with interference theory[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(10):4367-4374 [12] WEN Y, MA W, BAILEY J, et al. Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption[J]. IEEE Transactions on Terahertz Science & Technology, 2015, 5(3):406-411 [13] WANG L, JIANG Y, WANG J, et al. An ultra-broadband THz absorber based on graphene[C]//International Symposium on Antennas, Propagation and Em Theory, 2017,[S. l.]:IEEE, 699-702. [14] WANG B X, WANG L L, WANG G Z, et al. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2014, 26(2):111-114 [15] PAN W, YU X, ZHANG J, et al. A broadband terahertz metamaterial absorber based on two circular split rings[J]. IEEE Journal of Quantum Electronics, 2017, 53(1):1-6 [16] SIM D U, KWON J H, CHONG Y J, et al. Design of electromagnetic wave absorber using periodic structure and method to broaden its bandwidth based on equivalent circuit-based analysis[J]. IET Microwaves Antennas & Propagation, 2015, 9(2):142-150 [17] FAN Y, ZHANG H C, YIN J Y, et al. An active wideband and wide-angle electromagnetic absorber at microwave frequencies[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 15:1913-1916 [18] HUANG L. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Optical Letter, 2012, 37(2):154-156 [19] LIU S, CHEN H, CUI T J. A broadband terahertz absorber using multi-layer stacked bars[J]. Applied Physics Letters, 2015, 106(15):151601 [20] YOO M, LIM S. Polarization-independent and broadband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer, IEEE Transaction[J]. Antennas & Propagation, 2014, 62(5):2652-2658 [21] WANG B X, WANG G Z, WANG L L. Design of a novel dualband terahertz metamaterial absorber[J]. Plasmonics, 2016, 11(2):523-530 [22] RAHIM M K A, IBRAHIM N, MAJID H A, et al. Left-handed metamaterial structure incorporated with microstrip antenna[J]. Microwave & Optical Technology Letters, 2012, 54(12):2828-2832 [23] ZHOU J, KOSCHNY T, KAFESAKI M, et al. Size dependenceand convergence of the retrieval parameters of metamaterials[J]. Photon Nanostruct-Fundam Appl, 2008, 6(1):96-101 [24] COSTA F, MONORCHIO A. A frequency selective radome with wideband absorbing properties[J]. IEEE Transactions on Antennas & Propagation, 2012, 60(6):2740-2747 [25] HUANG L, CHOWDHURY D R, RAMANI S, et al. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers[J]. Applied Physics Letters, 2012, 101(10):101102 [26] WANG H T, CHEN W, HUANG Y, et al. Analysis of metamaterial absorber in normal and oblique incidence by using interference theory[J]. Aip Advances, 2013, 3(10):207402 |
[1] | 王永真, 罗向龙, 陈颖, 胡嘉灏, 龚宇烈. 地热水双级吸收式制冷系统的火用经济分析[J]. 广东工业大学学报, 2015, 32(1): 42-49. |
[2] | 翁婷婷, 郭建维, 黎新明, 崔英德, 尹国强, 张步宁. 可聚合离子液体AMPS-TEA的合成及其交联共聚物对有机溶剂的吸收行为[J]. 广东工业大学学报, 2013, 30(4): 33-38. |
[3] | 谢小柱, 魏昕, 胡伟, 黄福民. 高吸收率非金属材料对CO2激光反射率的试验测定[J]. 广东工业大学学报, 2010, 27(3): 1-4. |
[4] | 毛凌波; 张仁元; 柯秀芳; . 纳米流体的光热特性[J]. 广东工业大学学报, 2008, 25(3): 13-17. |
[5] | 罗志强; . 沥青加铺层构建应力吸收层的特性分析[J]. 广东工业大学学报, 2007, 24(03): 92-95. |
[6] | 蒋力立; 唐新桂; 唐振方; . 退火温度对锆酸铅薄膜光学性能的影响[J]. 广东工业大学学报, 2005, 22(1): 7-9. |
|