广东工业大学学报 ›› 2020, Vol. 37 ›› Issue (05): 13-21.doi: 10.12052/gdutxb.200071

• 综合研究 • 上一篇    下一篇

基于模糊收益率的分散化投资组合调整策略

杨兴雨, 刘伟龙, 井明月, 张永   

  1. 广东工业大学 管理学院,广东 广州 510520
  • 收稿日期:2020-05-19 出版日期:2020-09-17 发布日期:2020-09-17
  • 作者简介:杨兴雨(1981-),男,教授,博士,主要研究方向为金融工程与在线金融算法
  • 基金资助:
    国家自然科学基金资助项目(71501049);教育部人文社会科学研究基金资助项目(18YJA630132)

A Diversified Portfolio Selection Strategy Based on Fuzzy Return Rate

Yang Xing-yu, Liu Wei-long, Jing Ming-yue, Zhang Yong   

  1. School of Management, Guangdong University of Technology, Guangzhou 510520, China
  • Received:2020-05-19 Online:2020-09-17 Published:2020-09-17

摘要: 投资组合选择是量化金融领域的核心问题之一。本文研究模糊环境下考虑交易费用和基数约束的分散化投资组合调整问题。首先,将风险资产的收益率视为模糊变量,通过建立一个模糊收益率拟合模型,确定了各资产收益率的模糊分布。其次,通过提出一个新的分散化测度,建立了模糊均值-下半方差-分散化投资组合调整模型。然后,设计了一个改进的遗传算法对模型进行求解。最后,选取真实的股票数据进行实例分析。结果表明所提出的策略优于传统的投资组合调整策略。

关键词: 模糊投资组合模型, 模糊收益率拟合, 分散化测度, 改进的遗传算法

Abstract: Portfolio selection is one of the core issues in the field of quantitative finance. A diversified portfolio selection strategy is proposed by considering transaction cost and cardinality constraint. Firstly, the return rates of risky assets are regarded as fuzzy numbers and a fuzzy return rate fitting model is proposed to determine the fuzzy distribution of the assets’ return rates. Then, a new diversification measure is proposed for the portfolio and a fuzzy mean-semi-variance-diversification portfolio selection model is established. Next, a modified genetic algorithm is designed to solve the proposed models. Finally, an empirical example with real stock data is used to illustrate the proposed strategy. The results show that the proposed strategy performs better than the conventional portfolio selection strategies.

Key words: fuzzy portfolio model, fuzzy return rate fitting, diversification measure, modified genetic algorithm

中图分类号: 

  • F830
[1] MARKOWITZ H. Portfolio selection [J]. The Journal of Finance, 1952, 7(1): 77-91
[2] KONNO H, YAMAZAKI H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market [J]. Management Science, 1991, 37(5): 519-531
[3] 王伟, 刘巍. 不确定收益率下投资组合的可拓评价及变换[J]. 广东工业大学学报, 2012, 29(1): 83-87
WANG W, LIU W. Extension evaluation and transformation of the stock under uncertain profit rates [J]. Journal of Guangdong University of Technology, 2012, 29(1): 83-87
[4] 李佳, 徐维军, 张卫国. 含有背景风险的双目标投资组合模型研究[J]. 运筹与管理, 2017(4): 118-123
LI J, XU W J, ZHANG W G. Bi-objective portfolio selection model and algorithm with background risk [J]. Operations Research and Management Science, 2017(4): 118-123
[5] 杨兴雨, 何锦安, 沈健华. 基于移动窗口的适应性在线投资组合策略[J]. 广东工业大学学报, 2018, 35(3): 65-70
YANG X Y, HE J A, SHEN J H. An adaptive online portfolio strategy based on moving window [J]. Journal of Guangdong University of Technology, 2018, 35(3): 65-70
[6] ZADEH L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338-353
[7] CARLSSON C, ROBERT F, PÉTER M. A possibilistic approach to selecting portfolios with highest utility score [J]. Fuzzy Sets and Systems, 2002, 131(1): 13-21
[8] 刘勇军, 张卫国, 徐维军. 考虑现实约束的模糊多准则投资组合优化模型[J]. 系统工程理论与实践, 2013, 33(10): 2462-2470
LIU Y J, ZHANG W G, XU W J. Fuzzy multiple criteria portfolio selection optimization model under real constrains [J]. Systems Engineering-Theory & Practice, 2013, 33(10): 2462-2470
[9] YUE W, WANG Y P, XUAN H J. Fuzzy multi-objective portfolio model based on semi-variance-semi-absolute deviation risk measures [J]. Soft Computing, 2019, 23(17): 8159-8179
[10] 王灿杰, 邓雪. 基于可信性理论的均值-熵-偏度投资组合模型及其算法求解[J]. 运筹与管理, 2019, 28(2): 154-159, 192
WANG C J, DENG X. Mean-entropy-skewness portfolio model based on credibility theory and its algorithm solution [J]. Operations Research and Management Science, 2019, 28(2): 154-159, 192
[11] 宋健, 邓雪. 基于PSO-AFSA混合算法的模糊投资组合问题的研究[J]. 运筹与管理, 2018, 27(9): 148-155
SONG J, DENG X. Research on fuzzy portfolio based on the hybrid algorithm of PSO and AFSA [J]. Operations Research and Management Science, 2018, 27(9): 148-155
[12] LIU Y J, ZHANG W G. Possibilistic moment models for multi-period portfolio selection with fuzzy returns [J]. Computational Economics, 2019, 53(4): 1657-1686
[13] GUO S, YU L, LI X, et al. Fuzzy multi-period portfolio selection with different investment horizons [J]. European Journal of Operational Research, 2016, 245(3): 1026-1035
[14] KAR M B, KAR S, GUO S N, et al. A new bi-objective fuzzy portfolio selection model and its solution through evolutionary algorithms [J]. Soft Computing, 2019, 23(12): 4367-4381
[15] ZHANG W G, ZHANG X L, XU W J. A risk tolerance model for portfolio adjusting problem with transaction costs based on possibilistic moments [J]. Insurance: Mathematics and Economics, 2010, 46(3): 493-499
[16] VERCHER E, BERMÚDEZ J D, SEGURA J V. Fuzzy portfolio optimization under downside risk measures [J]. Fuzzy Sets and Systems, 2007, 158(7): 769-782
[17] INUIGUCHI M, TANINO T. Portfolio selection under independent possibilistic information [J]. Fuzzy Sets and Systems, 2000, 155(1): 83-92
[18] TSAUR R C. Fuzzy portfolio model with different investor risk attitudes [J]. Operations Research and Management Science, 2013, 227(2): 385-390
[19] JANA P, ROY T K, MAZUMDER S K. Multi-objective possibilistic model for portfolio selection with transaction cost [J]. Journal of Computational and Applied Mathematics, 2009, 228(1): 188-196
[20] YU J R, LEE W Y, CHIOU W J P. Diversified portfolios with different entropy measures [J]. Applied Mathematics and Computation, 2014, 241(3): 47-63
[21] YUE W, WANG Y P. A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios [J]. Physica A: Statistical Mechanics and Its Applications, 2017, 465: 124-140
[22] GUERRA M L, STEFANINI L. Approximate fuzzy arithmetic operations using monotonic interpolations [J]. Fuzzy Sets and Systems, 2005, 150(1): 5-33
[23] CARLSSON C, FULLÉR R. On possibilistic mean value and variance of fuzzy numbers [J]. Fuzzy Sets and Systems, 2001, 122(2): 315-326
[24] ZHANG W G, WANG Y L, CHEN Z P, et al. Possibilistic mean-variance models and efficient frontiers for portfolio selection problem [J]. Information Sciences, 2007, 177(13): 2787-2801
[25] LIN C C. A weighted max-min model for fuzzy goal programming [J]. Fuzzy Sets and Systems, 2004, 142(3): 407-420
[1] 朱怀念, 黄思涵, 黄佳怡, 黄永豪. 暧昧厌恶下含衍生品交易的最优投资与再保险策略[J]. 广东工业大学学报, 2022, 39(06): 26-35.
[2] 陈思豆, 黄卓铨, 杨兴雨. 考虑限制性卖空的多期模糊投资组合优化模型[J]. 广东工业大学学报, 2021, 38(02): 39-47.
[3] 何锦安, 王蓓, 林家星. 基于活跃专家意见的在线投资组合策略[J]. 广东工业大学学报, 2020, 37(04): 59-64.
[4] 魏生, 戴科冕. 区块链金融场景应用分析及企业级架构探讨[J]. 广东工业大学学报, 2020, 37(02): 1-10.
[5] 魏生, 戴科冕. 基于区块链技术的私募股权众筹平台变革及展望[J]. 广东工业大学学报, 2019, 36(02): 37-46.
[6] 杨兴雨, 何锦安, 沈健华. 基于移动窗口的适应性在线投资组合策略[J]. 广东工业大学学报, 2018, 35(03): 61-66.
[7] 曲江, 刘洪伟, 张玉磊, 朱慧. 知识产权资产证券化定价与盈余判断研究[J]. 广东工业大学学报, 2022, 39(01): 85-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!