广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (02): 99-104.doi: 10.12052/gdutxb.210090

• 综合研究 • 上一篇    下一篇

微生物固化花岗岩残积土耐崩解性能及抗冲刷性能研究

冯德銮, 肖雪莉, 梁仕华, 朱翀   

  1. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2021-06-12 出版日期:2022-03-10 发布日期:2022-04-02
  • 通信作者: 梁仕华(1976-),男,教授,博士,主要研究方向为环境岩土及地下空间工程,E-mail:shihua_l@gdut.edu.cn
  • 作者简介:冯德銮(1985-),男,讲师,博士,主要研究方向为岩土工程,E-mail:wolfluan@126.com
  • 基金资助:
    国家自然科学基金资助项目(52078142);广州市科技计划项目(202002030194)

Disintegration Resistance and Scouring Resistance of Microbial Solidified Granite Residual Soil

Feng De-luan, Xiao Xue-li, Liang Shi-hua, Zhu Chong   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-06-12 Online:2022-03-10 Published:2022-04-02

摘要: 采用喷洒方式对花岗岩残积土进行表面处理并进行耐崩解试验和抗冲刷模型试验。结合扫描电镜观测和颗粒粒度分析等微观测试技术,研究了喷洒式微生物诱导碳酸钙沉淀(Microbially Induced Calcium Carbonate Precipitation , MICP)表面处理对花岗岩残积土的耐崩解性和抗冲刷性的改善效果,并探讨其微细观控制机制。结果表明:经喷洒式MICP表面处理后,花岗岩残积土的微细颗粒胶结成尺寸较大的团聚体,试样的微观结构更加致密。同时,试样表面形成一层水稳性良好的碳酸钙和土颗粒连续胶结的硬壳层,从而有效地改善花岗岩残积土的耐崩解性和抗冲刷性。研究结果可为花岗岩残积土边坡加固提供可靠的依据。

关键词: 花岗岩残积土, 抗冲刷性能, MICP, 边坡, 团聚体

Abstract: In order to investigate the effect of microbially induced calcium carbonate precipitation (MICP) surface treatment on the disintegration resistance and scour resistance of granite residual soils and its microscopic control mechanism, the granite residual soils were treated by spraying and subjected to disintegration resistance tests and scour resistance model tests, combined with microscopic testing techniques such as scanning electron microscopy and particle size analysis. The results showed that after the sprayed MICP surface treatment, the microfine particles of granite residual soil were cemented into larger size agglomerates, the microstructure of the specimens was more dense, and a continuous cemented hard shell layer of calcium carbonate and soil particles with good water stability was formed on the surface of the specimens, which effectively improved the disintegration resistance and scouring resistance of granite residual soil.The results of the study can provide a reliable basis for the reinforcement of granite residual soil slopes.

Key words: granite residual soil, scouring resistance, microbially induced calcium carbonate precipitation (MICP), slope, aggregates

中图分类号: 

  • TU449
[1] 吴能森, 赵尘, 侯伟生. 花岗岩残积土的成因、分布及工程特性研究[J]. 平顶山工学院学报, 2004, 13(4): 1-4.
WU N S, ZHAO C, HOU W S. Research on the cause of formation, distribution and engineering characteristics of the granite residual soil [J]. Journal of Pingdingshan Institute of Technology, 2004, 13(4): 1-4.
[2] 张抒, 唐辉明. 非饱和花岗岩残积土崩解机制试验研究[J]. 岩土力学, 2013, 34(6): 1668-1674.
ZHANG S, TANG H M. Experimental study of disintegration mechanism for unsaturated granite residual soil [J]. Rock and Soil Mechanics, 2013, 34(6): 1668-1674.
[3] 周锡九, 赵晓峰. 坡面植草防护的浅层加固作用[J]. 北方交通大学学报, 1995, 19(2): 143-146.
ZHOU X J, ZHAO X F. Reinforcement action of slope protection with herbage at shallow layer [J]. Journal of Northern University, 1995, 19(2): 143-146.
[4] 杨正乐, 刘平, 郑维汉. 干根网状护坡法在公路植物防护中的应用[J]. 公路, 2003(4): 131-135.
YANG Z L, LIU P, ZHENG W H. Application of method for protecting side slops with reticulateddry wood trunks to planting-protection of highways [J]. Highway, 2003(4): 131-135.
[5] LIANG S H, CHEN J T, NIU J G, et al. Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation [J]. Marine Georesources and Geotechnology, 2020, 38(4): 393-399.
[6] 赵志峰, 邵光辉. 微生物诱导碳酸钙沉积加固海相粉土的试验研究[J]. 应用基础与工程科学学报, 2021, 29(1): 231-238.
ZHAO Z F, SHAO G H. Experimental study on marine silt reinforcement bymicrobial induced calcium precipitation [J]. Journal of Basic Science and Engineering, 2021, 29(1): 231-238.
[7] 梁仕华, 房采杏, 牛九格, 等. 钙源对微生物固化花岗岩残积土效果影响的研究[J]. 工业建筑, 2019, 49(7): 102-107.
LIANG S H, FANG C X, NIU J G, et al. Research on effect of microbially induced calcite precipitation adopting different calcium sources on cement granite residual soil [J]. Industrial Construction, 2019, 49(7): 102-107.
[8] 王子文, 魏然, 蔡红, 等. 营养液浓度和微生物活性对MICP固化淤泥质土强度的影响[J]. 中国水利水电科学研究院学报, 2020, 18(6): 486-493.
WANG Z W, WEI R, CAI H, et al. Effect of nutrient solution concentration and microbial activity onMICP solidified strength of soft clay [J]. Journal of China Institute of Water Resources and Hydropower Research, 2020, 18(6): 486-493.
[9] BANG S, MIN S H, BANG S S. Application of microbiologically induced soil stabilization technique for dust suppression [J]. International Journal of Geo-Engineering, 2011, 3(2): 27-37.
[10] CHU J, STABNIKOV V, IVANOV V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil [J]. Geomicrobiology Journal, 2012, 29(6): 544-549.
[11] 邵光辉, 冯建挺, 赵志峰, 等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报, 2017, 33(11): 133-139.
SHAO G H, FENG J T, ZHAO Z F, et al. Influence factor analysis related to strength and anti-erosion stability of silt slope with microbial mortar protective covering [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 133-139.
[12] 彭邦阳, 赵志峰. 表面入渗法诱导碳酸钙沉积加固海相粉土研究[J]. 林业工程学报, 2018, 3(5): 136-141.
PENG B Y, ZHAO Z F. Improvement of marine silt by microbial induced calcite precipitation by surface percolation [J]. Journal of Forestry Engineering, 2018, 3(5): 136-141.
[13] 李中义, 邵光辉, 马志刚. 微生物固化粉土坡面的植物适生性研究[J]. 林业工程学报, 2020, 5(2): 158-163.
LI Z Y, SHAO G H, MA Z G. Plant adaptability of silty soil slope protected by microbial solidification [J]. Journal of Forestry Engineering, 2020, 5(2): 158-163.
[14] 吴能森. 花岗岩残积土的分类研究[J]. 岩土力学, 2006, 27(12): 2299-2304.
WU N S. Study on classification of granite residual soils [J]. Rock and Soil Mechanics, 2006, 27(12): 2299-2304.
[15] 彭劼, 黄慕凡, 谢高强, 等. 微生物诱导碳酸钙沉积加固土体的注浆方法[J]. 河海大学学报(自然科学版), 2019, 47(3): 259-264.
PENG J, HUANG M F, XIE G Q, et al. Grouting method of MICP-treated soil [J]. Journal of Hohai University(Natural Sciences), 2019, 47(3): 259-264.
[16] GONG X, NIU J G, LING S H, et al. Environmental effect of grouting batches on microbial induced calcite precipitation [J]. Ekoloji, 2019, 28(107): 929-936.
[17] 陈嘉辉, 雷学文, 张彬. 基于微生物诱导碳酸钙沉积(MICP)改善淤泥质土强度[J]. 公路, 2021(3): 264-269.
CHEN J H, LEI X W, ZHANG B. Improvement on strength of silty soil based on MICP [J]. Highway, 2021(3): 264-269.
[18] 张霞, 李鹏, 李占斌, 等. 不同植被格局下凸型坡径流流速时空变化及产沙研究[J]. 水土保持学报, 2018, 32(6): 16-21.
ZHANG X, LI P, LI Z B, et al. Study on temporal and spatial variation of runoff velocity and sediment inthe convex hillslope under different vegetation patterns [J]. Journal of Soil and Water Conservation, 2018, 32(6): 16-21.
[19] LV C R, ZHU C, TANG C S, et al. Effect of fiber reinforcement on the mechanical behavior of bio-cemented sand[J]. Geosynthetics International, 2020. DOI: 10.1680/jgein.20.00037].
[1] 刘亚栋, 杨雪强, 徐雷, 林耀康, 龚星. 考虑土体强度各向异性的边坡稳定性分析[J]. 广东工业大学学报, 2018, 35(06): 57-62.
[2] 梁仕华, 周世宗, 张朗, 王蒙. 广州东部地区花岗岩残积土物理力学指标统计分析[J]. 广东工业大学学报, 2015, 32(1): 29-33.
[3] 彭功勋; . 全平衡法在填埋场边坡坡形设计中的应用[J]. 广东工业大学学报, 2006, 23(1): 31-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!