广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 91-97.doi: 10.12052/gdutxb.210196

• • 上一篇    下一篇

水泥与偏高岭土地聚物砂浆碱骨料反应对比研究

周晨林1, 冷政1, 彭晖2, 蒋震1   

  1. 1. 中建西部建设湖南有限公司 技术质量部, 湖南 长沙 410000;
    2. 长沙理工大学 土木工程学院, 湖南 长沙 410004
  • 收稿日期:2021-12-08 出版日期:2022-07-10 发布日期:2022-06-29
  • 作者简介:周晨林(1995–),男,研究员,硕士,主要研究方向为水泥与地聚物混凝土,E-mail:zclyang@foxmail.com
  • 基金资助:
    国家自然科学基金资助项目(51878068)

A Comparative Study of Alkali Aggregate Reaction of Cement Mortar and Metakaolin Geopolymer Mortar

Zhou Chen-lin1, Leng Zheng1, Peng Hui2, Jiang Zhen1   

  1. 1. Technical Quality Department, China West Construction Hunan Construction Company, Changsha 410000, China;
    2. School of Civil Engineering, Changsha University of Science & Technology, Changsha 410004, China
  • Received:2021-12-08 Online:2022-07-10 Published:2022-06-29

摘要: 为减少环境污染,近年来对碱激发胶凝材料的研究逐渐增加,而目前研究大多集中在地质聚合物机理方面,较少涉及其碱骨料反应。本文试图探究高温高碱环境下,碱激发胶凝材料砂浆与传统水泥砂浆碱骨料反应的不同,以推进碱激发胶凝材料的工程应用。通过测量试件不同龄期长度变化,研究掺不同骨料的水泥砂浆和偏高岭土基地聚物砂浆在高温高碱溶液中的变形行为,同时采用XRD、SEM等微观手段分析二者不同龄期产物的组成和微观结构。研究结果表明:地聚物与水泥的碱骨料反应历程存在明显区别,地聚物中不会发生严重的碱骨料反应,工程中能使用碱活性强的骨料;地聚物浆体最终形成(类)沸石结构,其笼式结构能吸附和固溶大量有害碱,能适应海工等强腐蚀性环境。

关键词: 水泥, 偏高岭土, 高温高碱, 碱骨料反应, 沸石结构

Abstract: The research on reducing environmental pollution has gradually increased in recent years. At present, the research mostly focuses on the mechanism of geopolymer, but seldom involves alkali aggregate reaction. This study attempts to explore the difference between alkali-activated cementitious material mortar and traditional cement mortar in high temperature and alkali environment. To promote the engineering application of alkali-activated cementitious materials, the deformation behavior of cement mortar with different aggregates and metakaolin geopolymer mortar in high temperature and alkali solution is studied by measuring the length changes of samples at different ages. At the same time, the composition and microstructure of products at different ages are analyzed by XRD, SEM and other micro-methods. It is shown that there are obvious differences in the alkali-aggregate reaction process between geopolymer and cement. There will be no serious alkali aggregate reaction in geopolymer, and aggregates with strong alkali activity can be used in engineering. Geopolymer paste eventually forms zeolite-like structure, which can absorb and solve a large number of harmful alkali and adapt to strong corrosive environment such as marine engineering.

Key words: cement, metakaolin, high temperature and high alkali, alkali aggregate reaction, zeolite structure

中图分类号: 

  • TU528.41
[1] 赵瑞. 碱激发矿渣的碱硅酸反应研究[D]. 长沙: 湖南大学, 2013.
[2] DAVIDOVITS J. Geopolymers and geopolymeric materials [J]. Journal of Thermal Analysis, 1989, 35(2): 429-441.
[3] 温梦丹, 陈嘉健, 高御审, 等. 基于水膜厚度假设分析磨细高炉矿渣对水泥浆性能影响[J]. 广东工业大学学报, 2018, 35(4): 119-126.
WEN M D, CHEN J J, GAO Y S, et al. Effect of ground granulated blast furnace slag on properties based on analysis of water film thickness hypothesis [J]. Journal of Guangdong University of Technology, 2018, 35(4): 119-126.
[4] STEGEMANN C. Acid corrosion resistance of different cementing materials [J]. Cement and Concrete Research, 2000, 25(4): 328-335.
[5] SHI C. Corrosion resistance of alkali-activated slag cement [J]. Advances in Cement Research, 2003, 15(2): 77-81.
[6] ROY D M, JIANG W, SILSBEE M R. Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties [J]. Cement & Concrete Research, 2000, 30(12): 1879-1884.
[7] 郑彦增, 卢都友, 刘永道, 等. 含碱活性碳酸盐骨料地质聚合物砂浆的变形行为[J]. 硅酸盐学报, 2012, 40(7): 1067-1070.
ZHENG Y Z, LU D Y, LIU Y D, et al. Deformation behaviour of geopolymer mortars with alkali-reactive carbonate aggregate [J]. Journal of the Chinese Ceramic Society, 2012, 40(7): 1067-1070.
[8] LU D, EPAARACHCHI J A, LAU K T, et al. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers [J]. Proceedings of SPIE-The International Society for Optical Engineering, 2013, 13(8): 87-93.
[9] 杨长辉, 蒲心诚. 碱矿渣水泥砂浆的碱集料反应膨胀研究[J]. 硅酸盐学报, 1999, 27(6): 651-657.
[10] BAKHAREV T, SANJAYAN J G, CHENG Y B. Resistance of alkali-activated slag concrete to alkali-aggregate reaction [J]. Cement and Concrete Research, 2001, 31(2): 331-334.
[11] 李维维, 陈昌礼, 李良川, 等. 外掺MgO水泥净浆和砂浆小尺寸试件的压蒸膨胀变形[J]. 材料科学与工程学报, 2016, 6(1): 160-165.
LI W W, CHEN C L, LI L C, et al. Autoclave-treated expansibility of small dimension specimens of cement paste and mortar with magnesium oxide [J]. Journal of Materials Science and Engineering, 2016, 6(1): 160-165.
[12] MA Y, YE G. The shrinkage of alkali activated fly ash [J]. Cement & Concrete Research, 2015, 6(8): 75-82.
[13] 水中和, 万惠文. 老混凝土中骨料-水泥界面过渡区(ITZ)(Ⅰ)——元素与化合物在ITZ的富集现象[J]. 武汉理工大学学报, 2002, 1(4): 23-25,76.
[14] 余红发, 孙伟, 王甲春, 等. 盐湖地区侵蚀性离子在混凝土中的扩散及其相互作用[J]. 东南大学学报(自然科学版), 2003, 33(2): 156-159.
YU H F, SUN W, WANG J C, et al. Diffusion of corrosive ions into concrete exposed to salt lake and interaction between corrosive-ions and concrete [J]. Journal of Southeast University (Natural Science Edition), 2003, 33(2): 156-159.
[15] ULM F J, COUSSY O, LI K, et al. Thermo-chemo-mechanics of ASR expansion in concrete structures [J]. Journal of Engineering Mechanics, 2000, 126(3): 233-235.
[16] 彭晖, 崔潮, 蔡春声, 等. 偏高岭土活性的煅烧温度影响及测定方法研究[J]. 硅酸盐通报, 2014, 33(8): 2078-2084,2094.
PENG H, CUI C, CAI C S, et al. Research on influence of calcination temperature on metakaolin reactivity [J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 2078-2084,2094.
[17] CHAPPEX T, SCRIVENER K L. The effect of Aluminum in solution on the dissolution of amorphous silica and its relation to cementitious systems [J]. Journal of the American Ceramic Society, 2013, 96(2): 196-204.
[18] 毛明杰, 韦旭朋, 韩鹏飞, 等. 养护条件对粉煤灰地聚物混凝土早期收缩性能的影响[J]. 混凝土, 2019(3): 90-93.
MAO M J, WEI X P, HAN P F, et al. Influence of curing conditions on early shrinkage of fly ash geopolymer concrete [J]. Concrete, 2019(3): 90-93.
[19] PROVIS J L, DEVENTER J S J V, LUKEY G C. A conceptual model for solid-gel transformations in partially reacted geopolymeric systems[M]. New Jersey: John Wiley & Sons Inc, 2012: 67-83.
[20] 徐惠忠. 活性Al2O3对碱-骨料反应(ASR)的抑制与制动作用[J]. 建筑材料学报, 2000, 2(3): 213-217.
[21] 刘刚. 含铝物质对混凝土中碱−硅酸反应抑制作用的研究[D]. 唐山: 河北联合大学, 2014.
[22] I GARCÍA L, PALOMO A, A FERNÁNDEZ J. Alkali-aggregate reaction in activated fly ash systems [J]. Cement & Concrete Research, 2007, 37(2): 175-183.
[23] 仇秀梅, 刘亚东, 严春杰, 等. 粉煤灰基地质聚合物固化Pb2+及其高温稳定性研究[J]. 硅酸盐通报, 2019, 38(7): 2281-2287,2294.
QIU X M, LIU Y D, YAN C J, et al. Research on immobilization of Pb2+ using fly ash-based geopolymer and its thermostability [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2281-2287,2294.
[24] 朱绘美, 宋强, 张军. 盐卤-干湿循环耦合作用下纳米偏高岭土改性混凝土的性能[J]. 硅酸盐学报, 2020, 48(2): 95-103.
ZHU H M, SONG Q, ZHANG J. Properties of nano-metakaolin modified concrete under the coupling effect of halogen-wetting cycle [J]. Journal of the Chinese Ceramic Society, 2020, 48(2): 95-103.
[1] 翟可仪, 叶明, 张耀文, 姜海波, 肖杰, 梅塨镛, 黄梓槺. ECC与钢筋黏结性能试验研究[J]. 广东工业大学学报, 2022, 39(02): 120-124.
[2] 梁仕华, 周锦程, 罗祺, 林焕生. 有机质对水泥固化淤泥土的力学特性影响试验研究[J]. 广东工业大学学报, 2019, 36(06): 86-91.
[3] 吕惠卿, 方一钱, 尹应梅. 考虑层间接触的旧水泥混凝土路面加铺厚沥青层的力学分析[J]. 广东工业大学学报, 2019, 36(05): 56-62.
[4] 尹应梅; 张荣辉;. 旧水泥混凝土路面改建的防水排水设计[J]. 广东工业大学学报, 2009, 26(1): 2-.
[5] 陈振庭; 罗志强; . 水泥混凝土路面断板的施工研究[J]. 广东工业大学学报, 2004, 21(3): 94-98.
[6] 邱木洲; 罗志强; . 水泥砼路面板底脱空区的压浆补强研究[J]. 广东工业大学学报, 2003, 20(3): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!