广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (04): 121-127.doi: 10.12052/gdutxb.210009

• • 上一篇    下一篇

倒三角形纳米粗糙表面液滴润湿性分子动力学模拟

蔡美玲, 李玉秀, 马奥杰, 陈颂佳, 黄仕昭, 陈颖   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2020-01-15 出版日期:2022-07-10 发布日期:2022-06-29
  • 通信作者: 李玉秀(1979–),女,副教授,博士,主要研究方向为微纳尺度多相流流动与传热传质,E-mail:Yuxiu.li@hotmail.com
  • 作者简介:蔡美玲(1996–),女,硕士研究生,主要研究方向为纳米粗糙表面液滴润湿特性
  • 基金资助:
    国家自然科学基金资助项目(51776043)

A Molecular Dynamics Simulation on Wettability of a Liquid Droplet on Solid Surface with Nanoscale Inverted Triangular Grooves

Cai Mei-ling, Li Yu-xiu, Ma Ao-jie, Chen Song-jia, Huang Shi-zhao, Chen Ying   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2020-01-15 Online:2022-07-10 Published:2022-06-29

摘要: 固体表面纳米结构可以有效地调控界面润湿特性,在材料能源等领域具有重要应用前景。改变纳米结构的几何尺寸能够在一定范围内调节润湿特性,但存在一定的局限性,调节固液间能量系数能够进一步改变界面的润湿特性。然而,纳米粗糙表面液滴在更大区间内的固液相互作用系数下的润湿特性研究甚少。本文采用分子动力学模拟的方法,研究了倒三角形纳米粗糙表面液滴在不同区间能量系数下呈现的润湿行为,并采用渗透率进行表征。结果发现:四个不同的区间内固液间能量系数对渗透率的作用规律不同,呈现出先增后减的趋势,液滴也依次呈现出显著的润湿态,对应润湿状态图中疏水的Cassie态到亲水的Wenzel态,而能量系数越过临界值(~7),Wenzel态再反转回显著的Cassie态;同时,液滴分子空间分布呈现明显的规律性,其底层原子在晶格线或晶面均衡分布,形似壁面原子的外延生长。本文的研究获得了能量系数对润湿性影响规律的全貌性认识,对纳米结构表面润湿性的设计和调控具有一定的指导意义。

关键词: 润湿性, 分子动力学模拟, 渗透率, 能量系数, 空间分布

Abstract: Solid surface with nanostructures can effectively regulate interfacial wettability, which has important application prospect in material energy and other fields. Changing the geometric dimension of nanostructures can adjust the wetting property in a certain range, but it has some limitations. Adjusting the solid-liquid energy parameter can further regulate and control interfacial wetting property. However, the effect of energy parameter during greater interval on wettability of droplets on nanostructured surface is rarely reported. Using the molecular dynamics simulations, wettability of a liquid droplet on solid surface with nanoscale inverted triangular grooves was studied with several energy parameters in different intervals. Such wettability can be characterized by penetrating rate. Increasing energy parameter in the four different intervals makes penetrating rate grow within varied ways, which increases firstly and then decreases. The droplet also in turn exhibits a significant wetting state, corresponding to the hydrophobic Cassie state to the hydrophilic Wenzel state in the wetting state map, and then reversed to the hydrophobic Cassie state if the energy parameter exceeds the critical value (~7). At the same time, the spatial distribution of droplet molecules shows obvious regularity, in which underlying atoms evenly distribute in the lattice line or crystal surface, shaped like the epitaxial growth of the solid atoms. The overall understanding of the effect of energy parameter on wettability is obtained, which provides direction to design or regulates wettability in nanostructure surface.

Key words: wettability, molecular dynamics simulation, penetrating rate, energy parameter, spatial distribution

中图分类号: 

  • O359.1
[1] YONG J, CHEN F, YANG Q, et al. A review of femtosecond-faser-induced underwater superoleophobic surfaces [J]. Advanced Materials Interfaces, 2018, 5(7): 1701370.
[2] CHEN S, WANG J, CHEN D. States of a water droplet on nanostructured surfaces [J]. The Journal of Physical Chemistry C, 2014, 118(32): 18529-18536.
[3] HIRVI J T, PAKKANEN T A. Nanodroplet impact and sliding on structured polymer surfaces [J]. Surface Science, 2008, 602(10): 1810-1818.
[4] MACGREGON-RAMIASA M N, VASILEV K. Questions and answers on the wettability of nano-engineered surfaces [J]. Advanced Materials Interfaces, 2017, 4(16): 1700381.
[5] BERENDJCHI A, KHAJAVI R, YAZDANSHENAS M E. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper [J]. Nanoscale Research Letters, 2011, 6(1): 594.
[6] LIU X, GU H, WANG M, et al. 3D printing of bioinspired liquid superrepellent structures [J]. Advanced Materials, 2018, 30(22): 1800103.
[7] LIU J L, FENG X Q, WANG G, et al. Mechanisms of superhydrophobicity on hydrophilic substrates [J]. Journal of Physics:Condensed Matter, 2007, 19(35): 356002.
[8] YONG X, ZHANG L T. Nanoscale wetting on groove-patterned surfaces [J]. Langmuir, 2009, 25(9): 5045-5053.
[9] BERIM G O, RUCKENSTEIN E. Contact angle of a nanodrop on a nano rough solid surface [J]. Nanoscale, 2015, 7(7): 3088-3099.
[10] 王宝和, 强伟丽, 王甜, 等. 纳米水滴在纳米粗糙壁面上润湿行为的分子动力学模拟[J]. 高校化学工程学报, 2017, 31(5): 1169-1176.
WANG B H, QIANG W L, WANG T, et al. Molecular dynamics simulation on wetting behaviors of water nanodroplets on nanotextured rough surfaces [J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(5): 1169-1176.
[11] 颜笑, 陈凤, 张勤昭, 等. 纳米沟槽表面润湿特性的分子动力学模拟[J]. 原子能科学技术, 2015, 49(增刊1): 342-348.
YAN X, CHEN F, ZHANG Q Z, et al. Molecular dynamics simulations on wettability of nano-grooved surface[J]. Atomic Energy Science and Technology, 2015, 49 (Suppl 1): 342-348.
[12] HIRVI J T, PAKKANEN T A. Enhanced hydrophobicity of rough polymer surfaces [J]. The Journal of Physical Chemistry B, 2007, 111(13): 3336-3341.
[13] JEONG W J, HA M Y, YOON H S, et al. Dynamic behavior of water droplets on solid surfaces with pillar-type nanostructures [J]. Langmuir, 2012, 28(12): 5360-5371.
[14] CHEN S, WANG J, MA T, et al. Molecular dynamics simulations of wetting behavior of water droplets on polytetrafluorethylene surfaces [J]. The Journal of Chemical Physics, 2014, 140(11): 114704.
[15] AMBROSIA M S, HA M Y, Balachandar S. The effect of pillar surface fraction and pillar height on contact angles using molecular dynamics [J]. Applied Surface Science, 2013, 282: 211-216.
[16] ZHANG L Y, XU J L, CHENQ C, et al. Switchable heat transfer in nano Janus-interface-system [J]. International Journal of Heat and Mass Transfer, 2018, 127: 761-771.
[17] DELHOMMELLE J, MILLIÉ P. Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation [J]. Molecular Physics, 2001, 99(8): 619-625.
[18] 李薇薇, 王胜利, 刘玉岭. 微电子工艺基础[M]. 北京: 化学工业出版社, 2006: 169-176.
[1] 庄怀印, 郭钟宁, 王俊杰, 吴明. 基于射流掩膜电解加工不锈钢注塑微结构研究[J]. 广东工业大学学报, 2020, 37(03): 70-74.
[2] 刘陈霖, 郑三强, 韩晓卓. 具有Allee效应捕食-竞争系统的时空动态分析[J]. 广东工业大学学报, 2019, 36(06): 38-44.
[3] 吕凤琴, 袁奇峰, 陈世栋. 广州农村集资房空间分布特征及其影响因素研究——基于GIS空间分析和SPSS数理分析[J]. 广东工业大学学报, 2015, 32(04): 8-16.
[4] 刘 芳, 熊锐, 唐智. 车用纳米润滑油添加剂热力学性质模拟分析[J]. 广东工业大学学报, 2010, 27(1): 39-41.
[5] 黄文波; 黎祚坚; . 新型铝中温钎焊剂钎焊性能研究[J]. 广东工业大学学报, 1999, 16(3): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!