广东工业大学学报 ›› 2022, Vol. 39 ›› Issue (05): 68-74.doi: 10.12052/gdutxb.220056

• • 上一篇    下一篇

事件触发机制下的工业过程多速率模型预测控制方法

杨翊卓, 代伟   

  1. 中国矿业大学 信息与控制工程学院,江苏 徐州 221116
  • 收稿日期:2022-03-28 发布日期:2022-07-18
  • 通信作者: 代伟(1984–),男,教授,博士,主要研究方向为人工智能驱动的复杂工业过程的建模、运行优化与运行反馈控制,E-mail:weidai@cumt.edu.cn
  • 作者简介:杨翊卓(1998–),男,硕士研究生,主要研究方向为复杂工业系统的运行优化与控制
  • 基金资助:
    国家自然科学基金资助面上项目(61973306);江苏省自然科学优秀青年基金资助项目(BK20200086);江苏省研究生科研与实践创新计划(KYCX22_2559);中国矿业大学研究生创新计划项目(2022WLJCRCZL100)

A Multi-rate Model Predictive Control with Event-Triggered Mechanism for Industrial Processes

Yang Yi-zhuo, Dai Wei   

  1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
  • Received:2022-03-28 Published:2022-07-18

摘要: 随着工业互联网的发展,为避免网络拥塞,控制系统正在由时间触发向事件触发控制方向发展。本文针对一类多速率工业过程,将模型预测控制与提升技术和事件触发技术相结合,提出了事件触发机制下的多速率模型预测控制方法。该方法首先采用提升技术解决多速率问题,进而采用模型预测控制(Model Predictive Control, MPC)方法设计控制器以跟踪设定值;在此基础上,设计保证系统稳定的事件触发机制,使控制器仅在违反触发机制时更新。通过对典型工业磨矿过程仿真实验来验证本文所提方法的有效性,结果表明所提方法能够有效减少信道资源的占用和计算负载,为工业互联网环境下工业过程控制器设计提供了新的方法。

关键词: 多速率, 事件触发, 模型预测控制, 磨矿过程

Abstract: With the development of the industrial internet, the control system is developing from time-triggered to event-triggered for avoiding network congestion. For a class of multi-rate industrial processes, a multi-rate model predictive control method with event trigger mechanism is proposed by combining model predictive control (MPC) with lifting and event-triggered technologies. The proposed method firstly adopts the lifting technology to solve the multi-rate problem, and then employs MPC algorithm to design controller to achieve the setpoint tracking. Furthermore, an event-triggered mechanism is designed to make the controller update only under the condition of trigger mechanism violation, while ensuring the system stability. Experiments have been carried out on an industrial grinding process, showing the effectiveness of the proposed method. The proposed method can save the communication resource and computational load, thereby providing a new method for the design of process industrial controllers in industrial internet framework.

Key words: multi-rate, event-triggered, model predictive control, grinding process

中图分类号: 

  • TP273
[1] 周济. 智能制造?“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284.
ZHOU J. Intelligent Manufacturing—main direction of “Made in China 2025” [J]. China Mechanical Engineering, 2015, 26(17): 2273-2284.
[2] 周琪, 陈广登, 鲁仁全, 等. 基于干扰观测器的输入饱和多智能体系统事件触发控制[J]. 中国科学: 信息科学, 2019, 49(011): 1502-1516.
ZHOU Q, CHEN G D, LU R Q, et al. Disturbance observer based event-triggered control for multi-agent systems with input saturation [J]. Sci Sin Inform, 2019, 49(011): 1502-1516.
[3] LI Y X, YANG G H. Model-based adaptive event-triggered control of strict-feedback nonlinear systems [J]. IEEE transactions on neural networks and learning systems, 2017, 29(4): 1033-1045.
[4] HAN X, ZHAO X, SUN T, et al. Event-triggered optimal control for discrete-time switched nonlinear systems with constrained control input [J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020(99): 1-10.
[5] CHENG J, LIANG L D, PARK J H. A dynamic event-triggered approach to state estimation for switched memristive neural networks with nonhomogeneous sojourn probabilities [J]. IEEE Transactions on Circuits and Systems I:Regular Papers., 2021, 68(12): 4924-4934.
[6] XU B, LIU X, WANG H. Event-triggered control for nonlinear systems via feedback linearization [J]. International Journal of Control, 2020(2): 1-19.
[7] HAN Y C, LIAN J. Periodic event-triggered and self-triggered control of singular system under stochastic cyber-attacks [J]. IET Control Theory & Applications, 2020, 14(19): 156-165.
[8] HASHIMOTO K, ADACHI S, DIMAROGONAS D V. Event-triggered intermittent sampling for nonlinear model predictive control [J]. Automatica, 2017, 81: 148-155.
[9] HEEMELS W P M H, DONKERS M C F. Model-based periodic event-triggered control for linear systems [J]. Automatica, 2013, 49(3): 698-711.
[10] DONKERS M C F, HEEMELS W P M H. Output-based event-triggered control with guaranteed L-gain and improved and decentralized event-triggering [J]. IEEE Transactions on Automatic Control, 2012, 57(6): 1362-1376.
[11] LU Q, SHI P, LIU J, et al. Model predictive control under event-triggered communication scheme for nonlinear networked systems [J]. Journal of the Franklin Institute, 2019, 356(5): 2625-2644.
[12] WANG X F, MICHAEL D L. Event-triggering in distributed networked control systems [J]. IEEE Transactions on Automatic Control, 2011, 56(3): 586-601.
[13] POSTOYAN R, TABUADA P, NESIC D, et al. A framework for the event-triggered stabilization of nonlinear systems [J]. IEEE Transactions on Automatic Control, 2015, 60(4): 982-996.
[14] WEI M, LI Y X, TONG S. Event-triggered adaptive neural control of fractional-order nonlinear systems with full-state constraints [J]. Neurocomputing, 2020, 412: 320-326.
[15] WANG X F, MICHAEL D L. On event design in event-triggered feedback systems [J]. Automatica, 2011, 47(10): 2319-2322.
[16] ZHANG X M, HAN Q L, ZHANG B L. An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems [J]. IEEE Transactions on Industrial Informatics, 2017, 13(1): 4-16.
[17] LU Q, SHI P, WU L G, et al. Event-triggered estimation and model predictive control for linear systems with actuator fault [J]. IET Control Theory & Applications, 2020, 14(16): 2406-2412.
[18] ZHAO F Y, JIANG Z P, LIU T F, et al. Event-triggered adaptive optimal control with output feedback: an adaptive dynamic programming approach [J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(11): 5208-5221.
[19] ZHAO F Y, GAO W N, LIU T F. Learning-based event-triggered adaptive optimal output regulation of linear discrete-time systems[C]//Data Driven Control and Learning Systems Conference (DDCLS). Suzhou: IEEE, 2021: 1516-1521.
[20] SAHOO A, HAO X, JAGANNATHAN S. Near optimal event-triggered control of nonlinear discrete-time systems using neuro dynamic programming [J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 27(9): 1801-1815.
[21] 代伟, 陆文捷, 付俊, 等. 工业过程多速率分层运行优化控制[J]. 自动化学报, 2019, 45(10): 1946-1959.
DAI W, LU W J, FU J, et al. Multi-rate layered optimal operational control of industrial processes [J]. Acta Automatica Sinica, 2019, 45(10): 1946-1959.
[22] 杨彬, 周琪, 曹亮, 等. 具有指定性能和全状态约束的多智能体系统事件触发控制[J]. 自动化学报, 2019, 45(8): 1527-1535.
YANG B, ZHOU Q, CAO L, et al. Event-triggered control for multi-agent systems with prescribed performance and full state constraints [J]. Acta Automatica Sinica, 2019, 45(8): 1527-1535.
[23] CHEN X S, YANG J, LI S H. Disturbance observer based multi-variable control of ball mill grinding circuits [J]. Journal of Process Control, 2009, 19(7): 1205-1213.
[1] 谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(01): 50-55.
[2] 彭积广, 肖涵臻. 模型预测控制下多移动机器人的跟踪与避障[J]. 广东工业大学学报, 2022, 39(05): 93-101.
[3] 刘建华, 李佳慧, 刘小斌, 穆树娟, 董宏丽. 事件触发机制下的多速率多智能体系统非脆弱一致性控制[J]. 广东工业大学学报, 2022, 39(05): 102-111.
[4] 黎耀东, 任志刚, 吴宗泽. 基于深度神经网络的注塑过程预测控制[J]. 广东工业大学学报, 2022, 39(05): 120-126,136.
[5] 杨文静, 夏建伟. 基于事件触发的大规模互联非线性系统的自适应分散漏斗控制[J]. 广东工业大学学报, 2022, 39(05): 137-144.
[6] 马静; 胡玉娥; 詹习生; . 基于模型预测的迭代学习控制器设计[J]. 广东工业大学学报, 2006, 23(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!