广东工业大学学报 ›› 2023, Vol. 40 ›› Issue (02): 82-87.doi: 10.12052/gdutxb.210188

• 综合研究 • 上一篇    下一篇

基于质子导体固体氧化物燃料电池制备乙烯的电化学模型研究

欧永振, 邱瑞铭, 雷励斌   

  1. 广东工业大学 材料与能源学院,广东 广州 510006
  • 收稿日期:2021-11-29 出版日期:2023-03-25 发布日期:2023-04-07
  • 通信作者: 雷励斌(1987-),男,特聘副教授,硕士生导师,主要研究方向为新能源系统的系统优化和材料开发,E-mail:Libinlei23@gdut.edu.cn
  • 作者简介:欧永振(1996-),男,硕士研究生,主要研究方向为质子导体反应器的电化学模型
  • 基金资助:
    国家自然科学基金资助项目(52002082)

Electrochemical Modeling Study of Ethylene Production Based on Proton-conducting Solid Oxide Fuel Cells

Ou Yong-zhen, Qiu Rui-ming, Lei Li-bin   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-11-29 Online:2023-03-25 Published:2023-04-07

摘要: 本文建立了质子导体固体氧化物燃料电池(H-SOFCs) 的电化学模型,分析电能与乙烯共产的H-SOFCs的电化学性能、法拉第效率和能量效率。模拟结果表明:基于H-SOFCs制备乙烯需要向外界吸收热量,升高温度有利于提高乙烷的转化率和降低电池的极化损失;在所模拟的H-SOFCs中,欧姆过电势和活化过电势占主导地位,而浓差过电势几乎可忽略不计;由于质子导体电解质存在不可忽略的电子电导,造成电池内部短路,形成泄漏电流,泄漏电流密度随着输出电压的升高而增大,导致法拉第效率和能量效率下降。

关键词: 乙烯, 质子导体固体氧化物燃料电池, 电化学模型

Abstract: An electrochemical model of proton-conducting solid oxide fuel cells(H-SOFCs) is built for investigating the electrochemical performance, Faraday efficiency and energy efficiency of co-generation of electric energy and ethylene in H-SOFCs. The simulation results show that ethylene production based on H-SOFCs needs external energy. Increasing the temperature is beneficial for improving the conversion rate of ethane and reducing the polarization loss of fuel cells. For the simulated H-SOFCs, the ohmic and activation over potentials are dominant, and the concentration over potential is almost negligible. The non-negligible electronic conductivity in the proton-conducting electrolyte layer leads to the internal short circuit of the fuel cells and the formation of leakage current. The leakage current density increases with the output voltage, resulting in the decrease of Faraday efficiency and energy efficiency.

Key words: ethylene, proton-conducting solid oxide fuel cells, electrochemical model

中图分类号: 

  • TM911.4
[1] 温翯, 郭晓莉, 苟尕莲. 乙烷裂解制乙烯的工艺研究进展[J]. 现代化工, 2020, 40(5): 47-51.
WEN H, GUO X L, GOU G L, et al. Process research advances in ethane cracking to ethylene [J]. Modern Chemical Industry, 2020, 40(5): 47-51.
[2] DING D, ZHANG Y, WU W, et al. A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane [J]. Energy & Environmental Science, 2018, 11(7): 1710-1716.
[3] SAITO H, SEKINE Y. Catalytic conversion of ethane to valuable products through non-oxidative dehydrogenation and dehydroaromatization [J]. RSC Advances, 2020, 10(36): 21427-21453.
[4] WU W, WANG L C, HU H, et al. Electrochemically engineered, highly energy-efficient conversion of ethane to ethylene and hydrogen below 550 ℃ in a protonic ceramic electrochemical cell [J]. ACS Catalysis, 2021, 11(19): 12194-12202.
[5] SHI L, YAN B, SHAO D, et al. Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst [J]. Chinese Journal of Catalysis, 2017, 38(2): 389-395.
[6] ZHANG X, YE L, LI H, et al. Electrochemical dehydrogenation of ethane to ethylene in a solid oxide electrolyzer [J]. ACS Catalysis, 2020, 10(5): 3505-3513.
[7] GAO Y, NEAL L, DING D, et al. Recent advances in intensified ethylene production—areview [J]. ACS Catalysis, 2019, 9(9): 8592-8621.
[8] FU X Z, LUO J L, SANGER A R, et al. Y-doped BaCeO3- δ nanopowders as proton-conducting electrolyte materials for ethane fuel cells to co-generate ethylene and electricity [J]. Journal of Power Sources, 2010, 195(9): 2659-2663.
[9] LIN J Y, SHAO L, SI F Z, et al. Multiple-doped barium cerate proton-conducting electrolytes for chemical-energy cogeneration in solid oxide fuel cells [J]. International Journal of Hydrogen Energy, 2018, 43(42): 19704-19710.
[10] LI J H, FU X Z, ZHOU G H, et al. FeCr2O4nanoparticles as anode catalyst for ethane proton conducting fuel cell reactors to coproduce ethylene and electricity [J]. Advances in Physical Chemistry, 2011, 2011: 1-6.
[11] FU X Z, LUO X X, LUO J L, et al. Ethane dehydrogenation over nano-Cr2O3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity [J]. Journal of Power Sources, 2011, 196(3): 1036-1041.
[12] LIU S, BEHNAMIAN Y, CHUANG K T, et al. A-site deficient La0.2Sr0.7TiO3- δ anode material for proton conducting ethane fuel cell to cogenerate ethylene and electricity [J]. Journal of Power Sources, 2015, 298: 23-29.
[13] LI J H, FU X Z, LUO J L, et al. Evaluation of molybdenum carbide as anode catalyst for proton-conducting hydrogen and ethane solid oxide fuel cells [J]. Electrochemistry Communications, 2012, 15(1): 81-84.
[14] LIN J Y, SHAO L, SI F Z, et al. Co2CrO4nanopowders as an anode catalyst for simultaneous conversion of ethane to ethylene and power in proton-conducting fuel cell reactors [J]. The Journal of Physical Chemistry C, 2018, 122(8): 4165-4171.
[15] LI M, HUA B, WANG L C, et al. Switching of metal–oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure [J]. Nature Catalysis, 2021, 4(4): 274-283.
[16] LI J, HOU J, XI X, et al. Cogeneration of ethylene and electricity in symmetrical protonic solid oxide fuel cells based on a La0.6Sr0.4Fe0.8Nb0.1Cu0.1O3- δ electrode [J]. Journal of Materials Chemistry A, 2020, 8(48): 25978-25985.
[17] YANG X, WEI T, CHI B, et al. Lanthanum manganite-based perovskite as a catalyst for co-production of ethylene and hydrogen by ethane dehydrogenation [J]. Journal of Catalysis, 2019, 377: 629-637.
[18] WANG L C, ZHANG Y, XU J, et al. Non-oxidative dehydrogenation of ethane to ethylene over ZSM-5 zeolite supported iron catalysts [J]. Applied Catalysis B:Environmental, 2019, 256: 117816.
[19] LIU S, CHUANG K T, LUO J L. Double-layered perovskite anode with in situ exsolution of a Co–Fe alloy to cogenerate ethylene and electricity in a proton-conducting ethane fuel cell [J]. ACS Catalysis, 2015, 6(2): 760-768.
[20] PUTILOV L P, DEMIN A K, TSIDILKOVSKI V I, et al. Theoretical modeling of the gas humidification effect on the characteristics of proton ceramic fuel cells [J]. Applied Energy, 2019, 242: 1448-1459.
[21] HAN D, TOYOURA K, UDA T. Protonated BaZr0.8Y0.2O3- δ: impact of hydration on electrochemical conductivity and local crystal structure [J]. ACS Applied Energy Materials, 2021, 4(2): 1666-1676.
[22] ZHANG Q, GUO Y, DING J, et al. Comprehensive models for evaluating electrolyte hole conductivity and its impacts on the protonic ceramic fuel cell [J]. Journal of Power Sources, 2020, 472: 228232.
[23] SHEN S, GUO L, LIU H. A polarization model for solid oxide fuel cells with a Bi-layer electrolyte [J]. International Journal of Hydrogen Energy, 2016, 41(5): 3646-3654.
[24] ZHANG J H, LEI L B, LIU D, et al. Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage [J]. Journal of Power Sources, 2018, 400: 333-340.
[25] NAKAMURA T, MIZUNUMA S, KIMURA Y, et al. Energy efficiency of ionic transport through proton conducting ceramic electrolytes for energy conversion applications [J]. Journal of Materials Chemistry A, 2018, 6(32): 15771-15780.
[26] QIU R M, LIAN W C, OU Y Z, et al. Multifactor theoretical analysis of current leakage in proton-conducting solid oxide fuel cells [J]. Journal of Power Sources, 2021, 505: 230038.
[27] XIAO J, XIE Y, LIU J, et al. Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels [J]. Journal of Power Sources, 2014, 268: 508-516.
[1] 柳滢春, 郭建维, 罗涛, 吴彤彪. (乙烯基咔唑-对金刚烷基苯乙烯)共聚物的合成与光致发光性能[J]. 广东工业大学学报, 2018, 35(01): 73-76.
[2] 区文仕, 张国庆, 袁晓娇, 苏攀. CT/PVDF超滤膜的制备与油水分离应用的研究[J]. 广东工业大学学报, 2015, 32(2): 126-131.
[3] 蒋鹏程, 曹有名. 动态硫化EPDM/PP/HDPE热塑性弹性体结构与性能的研究[J]. 广东工业大学学报, 2010, 27(4): 71-75.
[4] 孙可平1 , 李义鹏2 , 王红岩1 , 孟鹤2 , 刘闻灵1 , 曹 平1 , 许龙1. 带电绝缘体静电放电能量测试实验技术研究[J]. 广东工业大学学报, 2010, 27(4): 89-91.
[5] 赖子尼; 崔英德; 梁灿强; 王帅; . PVA-SA-PLA复合水凝胶的制备及铵离子扩散性能[J]. 广东工业大学学报, 2009, 26(3): 1-4.
[6] 吴炜亮; 吴国杰; 赖国柱; . 聚乙烯醇—壳聚糖水凝胶机械性能的研究[J]. 广东工业大学学报, 2006, 23(4): 105-109.
[7] 吴国杰; 吴炜亮; 李金蔓; 周家华; 崔英德; . 聚乙烯醇-壳聚糖水凝胶制备与溶胀行为的研究[J]. 广东工业大学学报, 2006, 23(3): 16-20.
[8] 冯本秀; 赖子尼; 陈俊彬; 张坤泉; 余煜棉; . 固定化硝化细菌去除水体中氨氮的研究[J]. 广东工业大学学报, 2006, 23(2): 29-33.
[9] 蔡立彬; 刘正堂; 崔英德; 黎少秋; 张小红; . 含有机硅共聚物水凝胶合成及其透氧性能研究[J]. 广东工业大学学报, 2005, 22(3): 7-10.
[10] 黎明庆; 周长忍; . 聚乙烯膜用压敏胶粘剂的研制[J]. 广东工业大学学报, 2005, 22(2): 6-11.
[11] 赵煌; 张敬阳; 吴伟端; . 活性绢云母在聚乙烯中增强作用的研究[J]. 广东工业大学学报, 2005, 22(1): 10-14.
[12] 许怡赦; 陈国鼎; 周金运; . 电化学处理对Π共轭聚合物阳极特性的改善[J]. 广东工业大学学报, 2004, 21(3): 8-10.
[13] 熊晓红; 周彦豪; 陈福林; . 废旧泡沫聚苯乙烯的再资源化[J]. 广东工业大学学报, 2004, 21(3): 21-27.
[14] 黎新明; 崔英德; . 单体配比对水凝胶接触镜材料溶胀性能的影响[J]. 广东工业大学学报, 2003, 20(1): 11-15.
[15] 邓淑华; 李期颁; 沈薇; . 苯乙烯改性醇酸树脂涂料相对分子质量及其分布的测定[J]. 广东工业大学学报, 1999, 16(3): 99-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!