广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 27-33.doi: 10.12052/gdutxb.230050
梁宇辰1, 蔡念1, 欧阳文生1, 谢依颖1, 王平2
Liang Yu-chen1, Cai Nian1, Ouyang Wen-sheng1, Xie Yi-ying1, Wang Ping2
摘要: 慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD) 是一种常见的全球呼吸系统疾病,需要耗费医生大量的时间和精力对CT图像进行初步评估诊断。为了提高阅片效率,提出一种基于CT图像切片关联信息的深度网络,辅助诊断慢性阻塞性肺疾病。提出一种分组方式将网络分成若干个网络分支,每个网络分支能够提取局部CT图像切片内部关联信息,结合双向LSTM技术整合各网络分支信息以提取CT图像全局切片关联信息。为了进一步提升网络分支的局部特征提取能力,融入ConvNeXt提出增强的多头卷积注意力模块。对比实验结果表明,所提出的深度网络能够更好地对CT图像进行分类,辅助COPD诊断,其准确率达到92.15%,敏感度达到94.17%,特异性达到91.17%,AUC达到95.33%。
中图分类号:
[1] MARKELIĆ I, HLAPČIĆ I, ČERI A, et al. Activation of NLRP3 inflammasome in stable chronic obstructive pulmonary disease [J]. Scientific Reports, 2022, 12(1): 7544. [2] VESTBO J, HURD S S, AGUSTÍ A G, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary [J]. American Journal of Respiratory and Critical Care Medicine, 2013, 187(4): 347-365. [3] MATHERS C D, LONCAR D. Projections of global mortality and burden of disease from 2002 to 2030 [J]. PLoS Medicine, 2006, 3(11): e442. [4] 周祖东. 慢性阻塞性肺疾病急性加重期的临床治疗分析[J]. 中外医疗, 2020, 39(36): 67-69. ZHOU Z D. Analysis of clinical treatment in acute exacerbation of chronic obstructive pulmonary disease [J]. China & Foreign Medical Treatment, 2020, 39(36): 67-69. [5] LYNCH D A, AUSTIN J H M, HOGG J C, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner society [J]. Radiology, 2015, 277(1): 192-205. [6] GALBÁN C J, HAN M K, BOES J L, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression [J]. Nature Medicine, 2012, 18(11): 1711-1715. [7] LYNCH D A, MOORE C M, WILSON C, et al. CT-based visual classification of emphysema: association with mortality in the COPDGene study [J]. Radiology, 2018, 288(3): 859-866. [8] SHAH V, KENIYA R, SHRIDHARANI A, et al. Diagnosis of COVID-19 using CT scan images and deep learning techniques [J]. Emergency Radiology, 2021, 28(3): 497-505. [9] POLAT Ö, ŞALK İ, DOĞAN Ö T. Determination of COPD severity from chest CT images using deep transfer learning network [J]. Multimedia Tools and Applications, 2022, 81(15): 21903-21917. [10] MONDOÑEDO J R, SATO S, OGUMA T, et al. CT imaging-based low-attenuation super clusters in three dimensions and the progression of emphysema [J]. Chest, 2019, 155(1): 79-87. [11] XU C, QI S, FENG J, et al. DCT-MIL: deep CNN transferred multiple instance learning for COPD identification using CT images [J]. Physics in Medicine & Biology, 2020, 65(14): 145011. [12] AHMED J, VESAL S, DURLAK F, et al. COPD classification in CT images using a 3D convolutional neural network[C]// Bildverarbeitung für die Medizin 2020. Berlin: Springer, 2020: 39-45. [13] VARCHAGALL M, NETHRAVATHI N P, CHANDRAMMA R, et al. Using deep learning techniques to evaluate lung cancer using CT images [J]. SN Computer Science, 2023, 4(2): 173. [14] KIENZLE D, LORENZ J, SCHÖN R, et al. COVID detection and severity prediction with 3D-ConvNeXt and custom pretrainings[C]//Computer Vision–ECCV. Tel Aviv: Springer, 2022: 500-516. [15] WU Y, DU R, FENG J, et al. Deep CNN for COPD identification by multi-view snapshot integration of 3D airway tree and lung field [J]. Biomedical Signal Processing and Control, 2023, 79: 104162. [16] KOLLIAS D, ARSENOS A, SOUKISSIAN L, et al. MIA-COV19D: COVID-19 detection through 3-D chest CT image analysis[C]// International Conference on Computer Vision. Montreal: IEEE/CVF, 2021: 537-544. [17] HUMPHRIES S M, NOTARY A M, CENTENO J P, et al. Deep learning enables automatic classification of emphysema pattern at CT [J]. Radiology, 2020, 294(2): 434-444. [18] LIN H, ZHANG S, LI Q, et al. A new method for heart rate prediction based on LSTM-BiLSTM-Att [J]. Measurement, 2023, 207: 112384. [19] FRIEDMAN P J. Imaging studies in emphysema [J]. Proceedings of the American Thoracic Society, 2008, 5(4): 494-500. [20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. arXiv: 2010.11929 (2021-01-03) [2023-03-15]. https://doi.org/10.48550/arXiv.2010.11929. [21] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE/CVF , 2022: 11976-11986. [22] LI J, XIA X, LI W, et al. Next-ViT: next generation vision transformer for efficient deployment in realistic industrial scenarios [EB/OL]. arXiv: 2207.05501 (2022-08-16) [2023-03-15]. https://doi.org/10.48550/arXiv.2207.05501. [23] WANG W, XIE E, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]// International Conference on Computer Vision. Montreal: IEEE/CVF, 2021: 568-578. |
[1] | 吴菊华, 李俊锋, 陶雷. 基于知识图谱嵌入与深度学习的药物不良反应预测[J]. 广东工业大学学报, 2024, 41(01): 19-26,40. |
[2] | 温雯, 刘莹, 蔡瑞初, 郝志峰. 面向多粒度交通流预测的时空深度回归模型[J]. 广东工业大学学报, 2023, 40(04): 1-8. |
[3] | 钟耿君, 李东. 基于通道分离机制的双分支点云处理网络[J]. 广东工业大学学报, 2023, 40(04): 18-23. |
[4] | 金宇凯, 李志生, 欧耀春, 张华刚, 曾江毅, 陈搏超. 基于多阶段聚类的PM2.5质量浓度预测及对比研究[J]. 广东工业大学学报, 2023, 40(03): 17-24. |
[5] | 吴俊贤, 何元烈. 基于通道注意力的自监督深度估计方法[J]. 广东工业大学学报, 2023, 40(02): 22-29. |
[6] | 刘冬宁, 王子奇, 曾艳姣, 文福燕, 王洋. 基于复合编码特征LSTM的基因甲基化位点预测方法[J]. 广东工业大学学报, 2023, 40(01): 1-9. |
[7] | 徐伟锋, 蔡述庭, 熊晓明. 基于深度特征的单目视觉惯导里程计[J]. 广东工业大学学报, 2023, 40(01): 56-60,76. |
[8] | 刘洪伟, 林伟振, 温展明, 陈燕君, 易闽琦. 基于MABM的消费者情感倾向识别模型——以电影评论为例[J]. 广东工业大学学报, 2022, 39(06): 1-9. |
[9] | 章云, 王晓东. 基于受限样本的深度学习综述与思考[J]. 广东工业大学学报, 2022, 39(05): 1-8. |
[10] | 郑佳碧, 杨振国, 刘文印. 基于细粒度混杂平衡的营销效果评估方法[J]. 广东工业大学学报, 2022, 39(02): 55-61. |
[11] | Gary Yen, 栗波, 谢胜利. 地球流体动力学模型恢复的长短期记忆网络渐进优化方法[J]. 广东工业大学学报, 2021, 38(06): 1-8. |
[12] | 赖峻, 刘震宇, 刘圣海. 基于全局数据混洗的小样本数据预测方法[J]. 广东工业大学学报, 2021, 38(03): 17-21. |
[13] | 岑仕杰, 何元烈, 陈小聪. 结合注意力与无监督深度学习的单目深度估计[J]. 广东工业大学学报, 2020, 37(04): 35-41. |
[14] | 曾碧, 任万灵, 陈云华. 基于CycleGAN的非配对人脸图片光照归一化方法[J]. 广东工业大学学报, 2018, 35(05): 11-19. |
[15] | 陈旭, 张军, 陈文伟, 李硕豪. 卷积网络深度学习算法与实例[J]. 广东工业大学学报, 2017, 34(06): 20-26. |
|