广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (01): 47-54.doi: 10.12052/gdutxb.220182

• 智慧医疗 • 上一篇    下一篇

基于改进奇异谱分析的毫米波生物雷达干扰抑制方法

刘震宇, 李成光, 王梓斌   

  1. 广东工业大学 信息工程学院, 广东 广州 510006
  • 收稿日期:2022-12-05 出版日期:2024-01-25 发布日期:2024-02-01
  • 通信作者: 李成光(1997–),男,硕士研究生,主要研究方向为雷达信号处理,E-mail:2112003066@mail2.gdut.edu.cn
  • 作者简介:刘震宇(1976–),男,副研究员,博士,主要研究方向为毫米波雷达、数字信号处理、自动驾驶、物联网技术和通信网安全,E-mail:zhenyuliu@gdut.edu.cn
  • 基金资助:
    广东省科技计划项目(2021A0505080014);广东省特派员项目(GDKTP2021011000);广东省基础与应用基础研究基金资助项目(2023A1515012873)

Interference Suppression Method of Millimeter Wave Bioradar Based on Improved Singular Spectrum Analysis

Liu Zhen-yu, Li Cheng-guang, Wang Zi-bin   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-12-05 Online:2024-01-25 Published:2024-02-01

摘要: 针对毫米波雷达间的互扰会造成生物雷达获取的微弱生命体征信号被淹没,导致无法准确测量呼吸心跳的问题,本文提出基于改进奇异谱分析的方法抑制雷达间互扰,通过相关性计算从受扰信号中选取目标差拍信号重构以抑制干扰和消除背景噪声。进一步提出基于信息熵的集合经验模态分解方法消除差拍信号残留的相位噪声,通过信息熵计算从集合经验模态分解后的固有模态函数分量中选择呼吸和心跳信号以抑制残留噪声。实验结果表明,所提出的方法能有效地从受干扰的信号中恢复呼吸和心跳信号,提高呼吸和心跳的信噪比。因此,本文所提方法提高了生物雷达的抗干扰能力,增强了生物雷达的实用性。

关键词: 毫米波生物雷达, 生命体征检测, 干扰抑制, 奇异谱分析, 集合经验模态分解

Abstract: To solve the problem that the interference between millimeter wave radars will cause the weak vital sign signal obtained by bioradar to be submerged, resulting in the inability to accurately measure respiration and heartbeat, a method is proposed based on improved singular spectrum analysis to suppress the interference between radars, and the target beat signal is reconstructed from the interfered signal through correlation calculation to suppress the interference and eliminate the background noise. Furthermore, an ensemble empirical mode decomposition method based on information entropy is proposed to eliminate the residual phase noise of the beat signals, and the respiration and heartbeat signals are selected from the intrinsic mode function components after ensemble empirical mode decomposition through information entropy calculation to suppress the residual noise. Experimental results show that the proposed method can effectively recover the respiration and heartbeat signals from the interfered signals, and improve the signal-to-noise ratios of respiration and heartbeat. Therefore, the methods proposed in this research improve the anti-interference ability of bioradar and enhance the practicability of bioradar.

Key words: millimeter wave bioradar, vital sign detection, interference suppression, singular spectrum analysis, ensemble empirical mode decomposition

中图分类号: 

  • TN959.6
[1] DELRIO C, OMER S B, MALANI P N. Winter of omicron-the evolving COVID-19 pandemic [J]. The Journal of American Medical Association, 2022, 327(4): 319-320.
[2] MATSUI T, YOSHIDA Y, KAGAWA M, et al. Development of a practicable non-contact bedside autonomic activation monitoring system using microwave radars and its clinical application in elderly people [J]. Journal of Clinical Monitoring and Computing, 2013, 27(3): 351-356.
[3] BROOKER G M. Mutual interference of millimeter-wave radar systems [J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(1): 170-181.
[4] AYDOGDU C, KESKIN M F, CARVAJAL G K, et al. Radar interference mitigation for automated driving: exploring proactive strategies [J]. IEEE Signal Processing Magazine, 2020, 37(4): 72-84.
[5] LI M, ZHANG X H, TONG X Q, et al. A novel PN-coded FMCW radar design and implementation[C]//Proceedings of 2011 IEEE CIE International Conference on Radar. Chengdu: IEEE, 2011: 1004-1007.
[6] KRASNOV O A, BABUR G P, LIGTHART L P, et al. Basics and first experiments demonstrating isolation improvements in the agile polarimetric FM-CW radar - PARSAX[C]//2009 European Radar Conference (EuRAD) . Rome: IEEE, 2009: 13-16.
[7] LIM S, LEE S, CHOI J H, et al. Mutual interference suppression and signal restoration in automotive fmcw radar systems [J]. IEICE Transactions on Communications, 2019, 102(6): 1198-1208.
[8] UYSAL F. Synchronous and asynchronous radar interference mitigation [J]. IEEE Access, 2019, 7: 5846-5852.
[9] ZHANG X, LIU Z Y, KONG Y A, et al. Mutual interference suppression using signal separation and adaptive mode decomposition in noncontact vital sign measurements [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-15.
[10] HARMOUCHE J, FOURER D, AUGER F, et al. The sliding singular spectrum analysis: a data-driven nonstationary signal decomposition tool [J]. IEEE Transactions on Signal Processing, 2018, 66(1): 251-263.
[11] HAN K, HONG S. Differential phase doppler radar with collocated multiple receivers for noncontact vital signal detection [J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 1233-1243.
[12] 王菲. 心电信号基线漂移噪声去除算法研究[D]. 大连: 辽宁师范大学, 2018.
[13] 史纪磊, 朱树海, 陆华晶, 等. 基于传导变换的自相关函数和互相关函数的拓展研究[J]. 广东工业大学学报, 2017, 34(1): 11-14.
SHI J L, ZHU S H, LU H J, et al. A research on the auto-correlation and cross-correlation function based on conductive transformation [J]. Journal of Guangdong University of Technology, 2017, 34(1): 11-14.
[14] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[15] 闫书法, 朱元宸, 陶磊, 等. 基于信息熵的机械传动油液光谱监测数据选择方法[J]. 光谱学与光谱分析, 2022, 42(8): 2637-2641.
YAN S F, ZHU Y C, TAO L, et al. Spectral oil condition monitoring data selection method for mechanical transmission based on information entropy [J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2637-2641.
[16] LIU Z Y, KONG Y A, ZHANG X, et al. Vital sign extraction in the presence of radar mutual interference [J]. IEEE Signal Processing Letters, 2020, 27: 1745-1749.
[1] 马超, 林希, 刘振祥. 基于互补集合经验模态分解与样本熵算法的接地系统故障选线研究[J]. 广东工业大学学报, 2023, 40(05): 94-101.
[2] 胡凤娟,宋亚男,徐荣华,谭芳. 基于Backstepping的船舶轨迹最优跟踪研究[J]. 广东工业大学学报, 2013, 30(1): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!