广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (02): 23-36.doi: 10.12052/gdutxb.230128

• 土木工程 • 上一篇    

水泥固化滨海软土动力特性研究进展与评述

冯德銮, 黎森宇, 梁仕华   

  1. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2023-09-01 发布日期:2024-04-23
  • 通信作者: 梁仕华(1976-),男,教授,博士,主要研究方向为环境岩土及地下空间工程,E-mail:shihua_l@gdut.edu.cn
  • 作者简介:冯德銮(1985-),男,讲师,博士,主要研究方向为岩土工程,E-mail:wolfluan@126.com
  • 基金资助:
    国家自然科学基金资助项目(52078142) ;广州市科技计划项目(202002030194)

Progress and Review on the Dynamic Characteristics of Cement Stabilized Coastal Soft Soil

Feng De-luan, Li Sen-yu, Liang Shi-hua   

  1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-09-01 Published:2024-04-23

摘要: 水泥搅拌桩加固技术是滨海软土地基处理最常用也最有效的方法之一。充分掌握水泥固化滨海软土的动力特性及其动态演化规律,是确保水泥搅拌桩软土地基在密集地铁线网和持续波浪作用所产生的动力荷载下维持安全稳定的重要前提。本文对当前国内外水泥固化滨海软土的动力特性和本构模型进行综述,系统归纳和分析水泥固化滨海软土的动力试验类型、动力特性指标、动力本构模型以及动力特性优化方法,讨论当前水泥固化滨海软土动力特性研究的不足,探讨具有针对性的研究建议,为水泥土动力特性研究提供新的思考和思路。

关键词: 土动力学, 水泥固化土, 动力荷载, 动强度, 动力特性

Abstract: Cement mixing pile reinforcement technology is one of the most commonly used and effective methods for coastal soft soil foundation treatment. Fully grasping the dynamic characteristics and dynamic evolution laws of cement solidified coastal soft soil is an important prerequisite to ensure the safety and stability of cement mixed pile soft soil foundation under the dynamic loads generated by dense subway network and continuous wave action. A review is conducted on the dynamic characteristics and constitutive models of cement solidified coastal soft soil both domestically and internationally. The dynamic test types, dynamic characteristic indicators, dynamic constitutive models, and optimization methods of cement solidified coastal soft soil are systematically summarized and analyzed. The shortcomings of current researches on the dynamic characteristics of cement solidified coastal soft soil are discussed, and targeted research suggestions are explored, which may provide new thinking and ideas for the study of the dynamic characteristics of cement soil.

Key words: soil dynamics, cement stabilized soil, dynamic load, dynamic strength, dynamic characteristics

中图分类号: 

  • TU435
[1] CUI X, ZHANG N, ZHANG J, et al. In situ tests simulating traffic-load-induced settlement of alluvial silt subsoil [J]. Soil Dynamics and Earthquake Engineering, 2014, 58: 10-20.
[2] 杜修力, 路德春. 土动力学与岩土地震工程研究进展[J]. 岩土力学, 2011, 32(S2): 10-20.
DU X L, LU D C. Advances in soil dynamics and geotechnical earthquake engineering [J]. Rock and Soil Mechanics, 2011, 32(S2): 10-20.
[3] KUMAR S S, KRISHNA A M, DEY A. Parameters influencing dynamic soil properties: a review treatise[C]//National Conference on Recent Advances in Civil Engineering. Bhiwani: [s. n. ], 2013: 1-10.
[4] FENG D L, WANG Y X, LIANG S H. A mechanism-based shear strength theoretical model for fiber-reinforced cemented soil [J]. Journal of Engineering Mechanics, 2023, 149(2): 04022108.
[5] CHEN M, SHEN S L, ARULRAJAH A, et al. Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay [J]. Geotextiles and Geomembranes, 2015, 43(6): 515-523.
[6] LIANG S H, WANG Y H, FENG D L. Experimental study on strength and dry-wet cycle characteristics of South China coastal soft soil solidified by cement collaborating sand particles [J]. Applied Sciences, 2023, 13(15): 8844.
[7] REN Y, YANG Q, WANG Y, et al. Experimental study on the undrained shear strength of deep-sea soft soil using improved T-bar penetrometer [J]. Marine Georesources & Geotechnology, 2020, 38(10): 1199-1208.
[8] MI D, LUO J, LIU X, et al. Origin distribution and geotechnical characters of marine soft clay in Guangxi coastal highway [J]. Journal of Coastal Research, 2019, 94(SI): 269-274.
[9] 郝艳茹, 王鹏, 张明珠, 等. 广花盆地地下水化学特征及其演化分析[J]. 生态环境学报, 2020, 29(2): 337-344.
HAO Y R, WANG P, ZHANG M Z, et al. Hydrochemical characteristic and its driving force of groundwater in the covered Karst in Pearl River basin [J]. Ecology and Environment, 2020, 29(2): 337-344.
[10] 宇珂, 王栋, 黄志滨, 等. 水泥搅拌桩在滨海软土地基加固中的应用分析[J]. 路基工程, 2021(1): 174-178.
YU K, WANG D, HUANG Z B, et al. Application analysis of cement mixing pile in reinforcement of coastal soft soil foundation [J]. Subgrade Engineering, 2021(1): 174-178.
[11] WANG A, ZHANG D, DENG Y. Lateral response of single piles in cement-improved soil: numerical and theoretical investigation [J]. Computers and Geotechnics, 2018, 102: 164-178.
[12] CHEN H, WANG Q. The behaviour of organic matter in the process of soft soil stabilization using cement [J]. Bulletin of Engineering Geology and the Environment, 2006, 65: 445-448.
[13] 梁仕华, 周锦程, 罗祺, 等. 有机质对水泥固化淤泥土的力学特性影响试验研究[J]. 广东工业大学学报, 2019, 36(6): 86-91.
LIANG S H, ZHOU J C, LUO Q, et al. An experimental research on the effect of organic matter on mechanical properties of cementing solidified silt [J]. Journal of Guangdong University of Technology, 2019, 36(6): 86-91.
[14] TREMBLAY H, DUCHESNE J, LOCAT J, et al. Influence of the nature of organic compounds on fine soil stabilization with cement [J]. Canadian Geotechnical Journal, 2002, 39(3): 535-546.
[15] HELSON O, ESLAMI J, BEAUCOUR A L, et al. Durability of soil mix material subjected to wetting/drying cycles and external sulfate attacks [J]. Construction and Building Materials, 2018, 192: 416-428.
[16] CHEN S, CHEN F, CHEN W, et al. A study on mechanical properties of modified soil-cement mixed with ferronickel slag powder under dry-wet cycles in marine environments [J]. Journal of Marine Science and Engineering, 2023, 11(9): 1684.
[17] 涂义亮, 刘新荣, 钟祖良, 等. 干湿循环下粉质黏土强度及变形特性试验研究[J]. 岩土力学, 2017, 38(12): 3581-3589.
TU Y L, LIU X R, ZHONG Z L, et al. Experimental study on strength and deformation characteristics of siltyclay during wetting-drying cycles [J]. Rock and Soil Mechanics, 2017, 38(12): 3581-3589.
[18] LOMBARDI D, BHATTACHARYA S, WOOD D M. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil [J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 165-180.
[19] TI K S, HUAT B B K, NOORZAEI J, et al. A review of basic soil constitutive models for geotechnical application [J]. Electronic Journal of Geotechnical Engineering, 2009, 14: 1-18.
[20] ELIA G, ROUAINIA M. Advanced dynamic nonlinear schemes for geotechnical earthquake engineering applications: a review of critical aspects [J]. Geotechnical and Geological Engineering, 2022, 40(7): 3379-3392.
[21] SITHARAM T G, VIPIN K S, JAMES N. Recent advances in soil dynamics relevant to geotechnical earthquake engineering[J]. Advances in Indian Earthquake Engineering and Seismology, 2018: 203-228.
[22] PRASAD B B. Advanced soil dynamics and earthquake engineering[M]. Delhi: PHI Learning Pvt. Ltd. , 2011.
[23] 赵凯月, 张鹏, 孔祥明, 等. 硅酸盐水泥水化动力学模型与试验方法研究进展[J]. 硅酸盐学报, 2022, 50(6): 1728-1761.
ZHAO K Y, ZHANG P, KONG X M, et al. Recent progress on portland cement hydration kinetic models and experimental methods [J]. Journal of The Chinese Ceramic Society, 2022, 50(6): 1728-1761.
[24] TSAI P H, NI S H. A study on dynamic properties of cement-stabilized soils [J]. Advanced Materials Research, 2011, 243: 2050-2054.
[25] GERMOSO C, DUVAL J L, CHINESTA F. Harmonic-modal hybrid reduced order model for the efficient integration of non-linear soil dynamics [J]. Applied Sciences, 2020, 10(19): 6778.
[26] DU J, LIU B, WANG Z, et al. Dynamic behavior of cement-stabilized organic-matter-disseminated sand under cyclic triaxial condition [J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106777.
[27] LANG L, LI F, CHEN B. Small-strain dynamic properties of silty clay stabilized by cement and fly ash [J]. Construction and Building Materials, 2020, 237: 117646.
[28] MOSES G G, RAO S N, RAO P N. Undrained strength behaviour of a cemented marine clay under monotonic and cyclic loading [J]. Ocean Engineering, 2003, 30(14): 1765-1789.
[29] YANG C, CUI Y J, PEREIRA J M, et al. A constitutive model for unsaturated cemented soils under cyclic loading [J]. Computers and Geotechnics, 2008, 35(6): 853-859.
[30] CHEN Q, YAN G, ZHUANG X, et al. Dynamic characteristics and microstructural study of nano calcium carbonate modified cemented soil under different salt water solutions [J]. Transportation Geotechnics, 2022, 32: 100700.
[31] CHEN Q S, YU R H, TAO G L, et al. Microstructure, strength and durability of nano-cemented soils under different seawater conditions: laboratory study [J]. Acta Geotechnica, 2023, 18(3): 1607-1627.
[32] DU J, ZHOU A, LIN X, et al. Revealing expansion mechanism of cement-stabilized expansive soil with different interlayer cations through molecular dynamics simulations [J]. The Journal of Physical Chemistry C, 2020, 124(27): 14672-14684.
[33] SAADE C, LI Z, ESCOFFIER S, et al. Centrifuge and numerical modeling of the behavior of homogeneous embankment on liquefiable soil subjected to dynamic excitation [J]. Soil Dynamics and Earthquake Engineering, 2023, 172: 107999.
[34] 徐烨. 水泥土桩复合地基地震效应分析[D]. 南京: 南京工业大学, 2005.
[35] SANGREY D A, HENKEL D J, ESRIG M I. The effective stress response of a saturated clay soil to repeated loading [J]. Canadian Geotechnical Journal, 1969, 6(3): 241-252.
[36] 侯永峰, 耿化军. 循环荷载作用下水泥复合土孔压性状试验研究[J]. 工业建筑, 2002, 39(9): 37-40.
HOU Y F, GENG H J. Testing study on the pore pressure of composite soil under cyclic loading [J]. Industrial Construction, 2002, 39(9): 37-40.
[37] 侯永峰, 张航, 周建, 等. 循环荷载作用下水泥复合土变形性状试验研究[J]. 岩土工程学报, 2001(3): 288-291.
HOU Y F, ZHANG H, ZHOU J, et al. Study on the strain of composite cement soil under cycic loading [J]. Chinese Journal of Geotechnical Engineering, 2001(3): 288-291.
[38] LIU F, ZHU K, HU X, et al. Experimental simple shear study of composite soil with cemented soil core [J]. Marine Georesources & Geotechnology, 2019, 37(8): 960-971.
[39] 杨军, 刘飞禹, 朱凯. 纤维加筋水泥土的静动力剪切特性研究[J]. 地下空间与工程学报, 2021, 17(S2): 563-569.
YANG J, LIU F Y, ZHU K. Research on static and dynamic shear strength properties of fiber reinforced cement soil [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 563-569.
[40] DU Y, DAI M, WANG C, et al. Cyclic shear characteristics of marine cement soil under stress path with bidirectional shear stress [J]. Marine Georesources & Geotechnology, 2021, 39(10): 1177-1191.
[41] LI J, CUI J, SHAN Y, et al. Dynamic shear modulus and damping ratio of sand-rubber mixtures under large strain range [J]. Materials, 2020, 13(18): 4017.
[42] AIREY D W, FAHEY M. Cyclic response of calcareous soil from the North-West Shelf of Australia [J]. Geotechnique, 1991, 41(1): 101-121.
[43] 陈善民, 王立忠, 李挺, 等. 水泥土动力特性室内试验及复合地基抗震特性分析[J]. 浙江大学学报(工学版) , 2000, 34(4): 50-55.
CHEN S M, WANG L Z, LI T, et al. Experimental determination of dynamic properties of cement-treated soil and earthquake behavior of composite foundation [J]. Journal of Zhejiang University(Engineering Science) , 2000, 34(4): 50-55.
[44] 梁旭, 蔡袁强. 复合地基动弹性模量和阻尼比的试验研究[J]. 土木工程学报, 2004(1): 96-101.
LIANG X, CAI Y Q. Study on the elastic modulus and the damping ratio of composite foundation [J]. China Civil Engineering Journal, 2004(1): 96-101.
[45] ZHANG L, SHI J, PENG Q, et al. Dynamic behavior of Haikou marine clay treated with cement [J]. Construction and Building Materials, 2023, 405: 133320.
[46] KE X, CHEN J, SHAN Y. A new failure criterion for determining the cyclic resistance of low-plasticity fine-grained tailings [J]. Engineering Geology, 2019, 261: 105273.
[47] NAMIKAWA T, KOSEKI J, SUZUKI Y. Finite element analysis of lattice-shaped ground improvement by cement-mixing for liquefaction mitigation [J]. Soils and Foundations, 2007, 47(3): 559-576.
[48] 郑晓, 郭玺. 水泥土复合土循环软化现象试验研究[J]. 路基工程, 2008(3): 67-69.
ZHENG X, GUO X. Experimental study on cyclic softening phenomenon of cement-soil composite soil [J]. Subgrade Engineering, 2008(3): 67-69.
[49] SUBRAMANIAM P, BANERJEE S. Factors affecting shear modulus degradation of cement treated clay [J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 181-188.
[50] IDRISS I M, SINGH R D, DOBRY R. Nonlinear behavior of soft clays during cyclic loading[J], Journal of the Geotechnical Engineering Division, 1978, 104(12) : 1427-1447.
[51] 李普, 樊恒辉, 史祥, 等. 地震荷载下水泥土循环剪切特性研究[J]. 岩石力学与工程学报, 2016, 35(S2): 4227-4234.
LI P, FAN H H, SHI X, et al. Study on cyclic shear characteristics of cement-soil under seismic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4227-4234.
[52] YASUHARA K, HYDE A F L, TOYOTA N, et al. Cyclic stiffness of plastic silt with an initial drained shear stress[C]//Proc Geotechnique Symp on Pre-failure Deformation of Geomterials. London: Thomas Telford Ltd. , 1998: 373-382.
[53] 梅君. 北部湾海相沉积层水泥搅拌土动力特性室内试验研究[D]. 南宁: 广西大学, 2019.
[54] 徐望国, 张家生, 贺建清, 等. 低灰量水泥土动力特性试验研究[J]. 湖南科技大学学报(自然科学版) , 2007(2): 52-56.
XU W G, ZHANG J S, HE J Q, et al. Study on dynamic properties of cement improved soil with low cement content [J]. Journal of Hunan University of Science & Technology (Natural Science Edition) , 2007(2): 52-56.
[55] 朱云强, 屈俊童, 季东, 等. 有机质含量对滇池重塑泥炭质土动强度特性的影响[J]. 科学技术与工程, 2022, 22(12): 4928-4937.
ZHU Y Q, QU J T, JI D, et al. Influence of organic matter content on dynamic strength characteristics of remolded peaty soil in Dianchi lake [J]. Science Technology and Engineering, 2022, 22(12): 4928-4937.
[56] 吴世明. 土动力学[M]. 北京: 中国建筑工业出版社, 2000.
[57] 高玉峰, 黎冰. 黏土与EPS颗粒混合轻质土的动强度特性试验研究[J]. 岩石力学与工程学报, 2007(S2): 4276-4283.
GAO Y F, LI B. Experimental study on dynamic strength properties of lightweight clay mixed with EPS beads soil [J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2): 4276-4283.
[58] 王凤池, 王庆龙, 董明, 等. 橡胶水泥土动力特性的试验研究[J]. 防灾减灾工程学报, 2014, 34(2): 253-258.
WANG F C, WANG Q L, DONG M, et al. Experimental study on dynamic characteristics of rubberized cemented soil [J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(2): 253-258.
[59] 王闵闵, 鹿群, 郭少龙, 等. 循环荷载作用下纤维水泥土动力特性[J]. 岩土力学, 2018, 39(5): 1753-1760.
WANG M M, LU Q, GUO S L, et al. Dynamic behavior of soil with fiber and cement under cyclic loading [J]. Rock and Soil Mechanics, 2018, 39(5): 1753-1760.
[60] BARKSDALE R D. Laboratory evaluation of rutting in base course materials[C]//Presented at the Third International Conference on the Structural Design of Asphalt Pavements. London: Transportation Research Integrated Database, 1972: 161-174.
[61] LING X, LI P, ZHANG F, et al. Permanent deformation characteristics of coarse grained subgrade soils under train-induced repeated load[J]. Advances in Materials Science and Engineering, 2017, 2017.
[62] LI N, WANG X, QIAO R, et al. A prediction model of permanent strain of unbound gravel materials based on performance of single-size gravels under repeated loads [J]. Construction and Building Materials, 2020, 246: 118492.
[63] 陈颖平, 黄博. 掺水泥模拟原状软土动力特性的可行性试验研究[J]. 建筑结构, 2015, 45(1): 87-90.
CHEN Y P, HUANG B. Feasibility experimental study on simulating dynamic characteristics of natural soft clay by filling cement [J]. Building Structure, 2015, 45(1): 87-90.
[64] AN L, CHEN J, LI D, et al. Accumulative strain of sand-containing soft soil reinforced by cement and sodium silicate under traffic loading [J]. Sustainability, 2022, 14(21): 14127.
[65] 刘新宇, 张先伟, 孔令伟, 等. 冲击荷载作用下花岗岩残积土的动力损伤与破坏机理[J]. 岩土工程学报, 2019, 41(10): 1872-1881.
LIU X Y, ZHANG X W, KONG L W, et al. Structural damage and dynamic failure mechanism of granite residual soils under impact loading [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1872-1881.
[66] CHIARADONNA A, TROPEANO G, D’ ONOFRIO A, et al. Development of a simplified model for pore water pressure build-up induced by cyclic loading [J]. Bulletin of Earthquake Engineering, 2018, 16: 3627-3652.
[67] 黄茂松, 边学成, 陈育民, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2020, 53(8): 64-86.
WANG M S, BIAN X C, CHEN Y M, et al. Soil dynamics and geotechnical earthquake engineering [J]. China Civil Engineering Journal, 2020, 53(8): 64-86.
[68] 王皆伟, 王汝恒. 土动力本构模型初探[J]. 四川建筑科学研究, 2005(5): 89-91.
WANG J W, WANG R H. The study of the soil dynamic constitutive model [J]. Sichuan Building Science, 2005(5): 89-91.
[69] 迟世春, 郭晓霞, 杨峻, 等. 土的动力Hardin-Drnevich模型小应变特性及其阈值应变研究[J]. 岩土工程学报, 2008, 30(2): 243-249.
CHI S C, GUO X X, YANG J, et al. Small strain characteristics and threshold strain of dynamic Hardin-Drnevich model for soils [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 243-249.
[70] TER-MARTIROSYAN A, SIDOROV V, SOBOLEV E. Dynamic properties of soil cements for numerical modelling of the foundation’s basis transformed under the technology of deep soil mixing: a determination method [J]. Buildings, 2022, 12(7): 1028.
[71] YU X, LIU H, SUN R, et al. Improved Hardin-Drnevich model for the dynamic modulus and damping ratio of frozen soil [J]. Cold Regions Science and Technology, 2018, 153: 64-77.
[72] 侯天顺, 崔奕翔. EPS 颗粒混合轻量土的动变形特性及修正 Hardin-Drnevich 模型研究[J]. 岩土工程学报, 2021, 43(9): 1602-1611.
HOU T S, CUI Y X. Dynamic deformation characteristics and modified Hardin-Drnevich model for light weight soil mixed with EPS particles [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1602-1611.
[73] ORAKOGLU M E, LIU J, NIU F. Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles [J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 269-284.
[74] 李潇旋. 静态与循环荷载下非饱和土的弹塑性双面模型研究[D]. 北京: 北京交通大学, 2021.
[75] 曾军军, 卢廷浩. 考虑土体结构性的弹塑性软化模型[J]. 岩土力学, 2007, 28(6): 1091-1094.
ZENG J J, LU T H. An elastoplastic softening model of structured soil [J]. Rock and Soil Mechanics, 2007, 28(6): 1091-1094.
[76] LEE J S. Cyclic hardening and degradation effects on site response during an earthquake [J]. Journal of the Earthquake Engineering Society of Korea, 2008, 12(6): 65-71.
[77] 胡亚元. 关于率无关塑性力学和广义塑性力学的评述[J]. 岩土工程学报, 2005, 27(1): 128-131.
HU Y Y. Comment on rate-independent plasticity and generalized plasticity [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 128-131.
[78] 王德玲, 葛修润. 关于分级单屈服面模型的几个问题的探讨[J]. 岩土力学, 2004, 25(7): 1059-1062.
WANG D L, GUO X R. Discussion of some problems about HISS model [J]. Rock and Soil Mechanics, 2004, 25(7): 1059-1062.
[79] 庄海洋, 陈国兴, 朱定华. 土体动力粘塑性记忆型嵌套面本构模型及其验证[J]. 岩土工程学报, 2006, 28(10): 1267-1272.
ZHUANG H Y, CHEN G X, ZHU D H. Dynamic visco-plastic memorial nested yield surface model of soil and its verification [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1267-1272.
[80] 李兴照, 黄茂松, 王录民. 流变性软黏土的弹黏塑性边界面本构模型[J]. 岩石力学与工程学报, 2007, 26(7): 1393-1401.
LI X Z, HUANG M S, WANG L M. Bounding surface elasto-viscoplastic constitutive model for rheological behaviors of soft clays [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1393-1401.
[81] VALANIS K C. A theory of viscoplasticity without a yield surface [J]. Archives of Mechaniscs, 1971, 23(4): 517-551.
[82] 丁勇春. 软土地区深基坑施工引起的变形及控制研究[D]. 上海: 上海交通大学, 2009.
[83] 王军, 郑晓, 蔡袁强, 等. 应变控制下水泥土动静力特性试验[J]. 浙江大学学报:工学版, 2010, 44(10): 1857-1862.
WANG J, ZHENG X, CAI Y Q, et al. Experimental research on static and dynamic characteristics ofcement soil under strain control [J]. Journal of Zhejiang University(Engineering Science) , 2010, 44(10): 1857-1862.
[84] 胡秀青, 董全杨, 吕程伟, 等. 水泥土搅拌桩软土地基土体动力特性的共振柱试验研究[J]. 岩土力学, 2016, 37(S2): 343-348.
HU X Q, DONG Q Y, LYU C W, et al. Resonant column experimental study of dynamic properties of soft clay foundation with cement soil mixing piles [J]. Rock and Soil Mechanics, 2016, 37(S2): 343-348.
[85] 张鹏, 朱珍德, 王军, 等. 不同掺剂对水泥土动力特性的影响[J]. 长江科学院院报, 2014, 31(5): 62-67.
ZHANG P, ZHU Z D, WANG J, et al. Effect of additives on dynamic properties of cement-stabilized soils [J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(5): 62-67.
[86] WU J, WANG J, LIU M, et al. Dynamic properties of silt-based foamed concrete as filler in subgrade [J]. Journal of Materials in Civil Engineering, 2022, 34(10): 04022241.
[87] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2021, 34(Z2): 273-277.
LI Y P, LI T. Stability mechanism and research progress of soil stabilizer [J]. Materials Reports, 2021, 34(Z2): 273-277.
[88] 李庆冰. 橡胶水泥土动力特性的试验研究[D]. 沈阳: 沈阳建筑大学, 2011.
[89] 张彬, 宫照伟. 铁尾矿粉改良水泥土的强度与动力特性试验研究[J]. 硅酸盐通报, 2017, 36(11): 3607-3612.
ZHANG B, GUANZ Z W. Experimental study on strength and dynamic characteristics of cement soil modified with iron tailings powder [J]. Bulletin of The Chinese Ceramic Society, 2017, 36(11): 3607-3612.
[90] 汪明元, 鹿群, 郭少龙, 等. 素水泥土及纤维水泥土动力特性试验研究[J]. 人民长江, 2018, 49(12): 87-92.
WANG M Y, LU Q, GUO S L, et al. Experimental study on dynamic properties of pure cement soil and fiber reinforced cement soil [J]. Yangtze River, 2018, 49(12): 87-92.
[91] 庄心善, 寇强. 循环荷载下纳米SiO2改良水泥土动变形研究及微观分析[J]. 工业建筑, 2022, 52(5): 169-173.
ZHUANG X S, KOU Q. Research on dynamic deformation of Nano-SiO2-Improved cement-soilunder cyclic loading and its microstructure analysis [J]. Industrial Construction, 2022, 52(5): 169-173.
[92] MOLLAEI M, JAHANIAN H, AZADI M. Laboratory study of the cyclic behavior of cement sand with nanoclay[J]. Geotechnical and Geological Engineering, 2023: 1-13.
[93] 王清, 陈慧娥, 蔡可易. 水泥土微观结构特征的定量评价[J]. 岩土力学, 2003, 24(S1): 12-16.
WANG Q, CHEN H E, CAI K Y. Quantitative evaluation of microstructure features of soil contained some cement [J]. Rock and Soil Mechanics, 2003, 24(S1): 12-16.
[94] NARANI S S, ZARE P, ABBASPOUR M, et al. Evaluation of fiber-reinforced and cement-stabilized rammed-earth composite under cyclic loading [J]. Construction and Building Materials, 2021, 296: 123746.
[1] 陈宇文; 王卫琴;. 大跨度钢管砼拱桥空间地震响应分析[J]. 广东工业大学学报, 2006, 23(2): 114-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!