广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (02): 56-64.doi: 10.12052/gdutxb.230021
• 计算机科学与技术 • 上一篇
殷丹丽, 凌捷
Yin Dan-li, Ling Jie
摘要: 针对传统Android恶意程序检测方法无法解决的伪装及实时检测问题,提出了一种基于异构信息网络的Android恶意程序检测方法。将Android实体及关系建模为异构信息网络中的节点和边,设计了元结构注意力网络表示学习模型和增量学习模型。首先使用元结构注意力网络表示学习模型进行训练集节点嵌入,将节点嵌入及标签输入到深度神经网络中进行训练,再采用增量表示学习模型学习测试集节点嵌入,使用top-k算法寻找邻居节点进行聚合,将待检测节点输入到训练好的深度神经网络中进行检测。实验结果表明,该方法$ {F}_{1} $值为97.5%,准确率为96.7%,平均检测时间3.7 ms。与现有方法相比,$ {F}_{1} $值和准确率更高,平均检测时间更短,表明该方法能够有效应对Android恶意程序伪装,可以用于实时Android恶意程序检测。
中图分类号:
[1] ZHANG G, LI Y, BAO X, et al. TSDroid: a novel android malware detection framework based on temporal & spatial metrics in IoMT [J]. ACM Transactions on Sensor Networks, 2023, 19(3): 1-23. [2] AMI A S, KAFLE K, MORAN K, et al. Systematic mutation-based evaluation of the soundness of security-focused android static analysis techniques [J]. ACM Transactions on Privacy and Security, 2021, 24(3): 1-37. [3] HU C C, JENG T H, Chen Y M. Dynamic android malware analysis with de-identification of personal identifiable information[C]//2020 the 3rd International Conference on Computing and Big Data(ICCBD) . New York: Association for Computing Machinery, 2020: 30-36. [4] 郑珏, 欧毓毅. 基于卷积神经网络与多特征融合恶意代码分类方法[J]. 计算机应用研究, 2022, 39(1): 240-244. ZHENG J, OU Y Y. Malware classification method based on convolutional neural network and multi-feature fusion [J]. Application Research of Computers, 2022, 39(1): 240-244. [5] REN X X, ZHAO L R, WANG K, et al. Android malware detection based on heterogeneous information network with cross-layer features[C]// 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) . Piscataway: IEEE, 2022: 1-4. [6] LI B T, PI D. Network representation learning: a systematic literature review [J]. Neural Computing and Applications, 2020, 32(21): 16647-16679. [7] 黄剑航, 王振友. 基于特征融合的深度学习目标检测算法研究[J]. 广东工业大学学报, 2021, 38(4): 52-58. HUANG J H, WANG Z Y. A research on deep learning object detection algorithm based on feature fusion [J]. Journal of Guangdong University of Technology, 2021, 38(4): 52-58. [8] 凌捷, 殷丹丽, 罗玉. 一种基于异构图注意力网络的安卓恶意程序检测方法和装置: CN202210983464.3[P]. 2022-8-14. [9] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD) . New York: Association for Computing Machinery, 2016: 855-864. [10] ZHANG D, YIN J, ZHU X, et al. Metagraph2vec: complex semantic path augmented heterogeneous network embedding[C]//Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference(PAKDD) . Berlin: Springer, 2018: 196-208. [11] ROMERO H J, LI C, WANG P, et al. ACE-GCN: a fast data-driven FPGA accelerator for GCN embedding [J]. ACM Transactions on Reconfigurable Technology and Systems, 2021, 14(4): 1-23. [12] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//The 2019 World Wide Web Conference(WWW) . New York: Association for Computing Machinery, 2019: 2022-2032. [13] DAOUDI N, ALLIX K, BISSYANDÉ T F, et al. A deep dive inside drebin: an explorative analysis beyond android malware detection scores [J]. ACM Transactions on Privacy and Security, 2022, 25(2): 1-28. [14] WANG S, PHILIP S Y. Heterogeneous graph matching networks: Application to unknown malware detection[C]//2019 IEEE International Conference on Big Data. California: IEEE Computer Society Press, 2019: 5401-5408. [15] XU K, LI Y, DENG R, et al. Droidevolver: self-evolving android malware detection system[C]//2019 IEEE European Symposium on Security and Privacy. California: IEEE Computer Society Press, 2019: 47-62. |
[1] | 黎耀东, 任志刚, 吴宗泽. 基于深度神经网络的注塑过程预测控制[J]. 广东工业大学学报, 2022, 39(05): 120-126,136. |
|