广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (02): 116-121.doi: 10.12052/gdutxb.220181

• 综合研究 • 上一篇    

基于无线供电空中计算系统的收发器优化设计

洪泽彬, 王丰   

  1. 广东工业大学 信息工程学院, 广东 广州, 510006
  • 收稿日期:2022-12-02 发布日期:2024-04-23
  • 通信作者: 王丰(1987-),男,副教授,博士,主要研究方向为移动边缘计算、机器学习与凸优化理论应用,E-mail:fengwang13@gdut.edu.cn
  • 作者简介:洪泽彬(1998-),男,硕士研究生,主要研究方向为无线通信、空中计算,E-mail:zebin77@foxmail.com
  • 基金资助:
    国家自然科学基金资助项目(61901124) ;广东省自然科学基金资助项目(2021A1515012305) ;广州市科技计划项目(202102020856)

An Optimized Transceiver Design for Wireless Powered Over-the-air Computation Systems

Hong Ze-bin, Wang Feng   

  1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2022-12-02 Published:2024-04-23

摘要: 本文研究基于无线供电的空中计算系统,其能量发射器采用能量波束形成技术为多个低功耗传感器提供能源,基于无线多址接入信号叠加的空中计算原理,传感器将感知数据同时传输至无线接入点,无线接入点应用接收滤波技术直接完成感测数据的函数值计算。本文考虑一个先采能后感知再传输的工作协议,建模满足传感器能量收集约束条件和计算均方误差约束条件的能量发射器发射能量最小化问题,以及对能量发射器的能量波束形成向量、无线接入点的接收波束形成向量和传感器终端的发射系数进行联合优化。由于复杂的变量耦合性,基于发射能量最小化的空中计算系统设计问题属于一类非凸优化问题。为降低计算复杂度,本文提出一种交替优化求取次优解的方案。仿真结果表明该设计方案具有快速收敛性和优越性。

关键词: 空中计算, 能量收集, 计算均方误差, 交替优化

Abstract: A wireless powered over-the-air computation (AirComp) system is studied, where one separately-located energy transmitter (ET) is deployed to charge multiple low-power sensors simultaneously via energy beamforming, and these sensors rely on the harvested energy for sequential data sensing and functional computation along with the access point (AP) . A harvest-then-sense-and-transmit protocol is considered. Under this system setup, an energy-efficient AirComp design is pursued to minimize the transmit energy of the ET, subject to the sensor energy harvesting constraints and the computational mean squared error (MSE) constraints. The energy beamforming vectors of the ET, the receive beamforming vectors of the AP, and the transmit coefficients at the sensors are jointly optimized. Due to the complicated variable coupling, the resultant energy minimization problem is non-convex. As such, an alternating optimization method is presented to obtain a near-optimal design solution in an iteration manner. Numerical results are provided to show the fast convergence performance and the merit of the proposed design solution.

Key words: over-the-air computation (AirComp), energy harvesting, computational MSE, alternating optimization

中图分类号: 

  • F224.32
[1] MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective [J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
[2] CHEN M Z, CHALLITA U, SAAD W, et al. Artificial neural networks-based machine learning for wireless networks: a tutorial [J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3039-3071.
[3] 陈力, 卫国. 未来无线网络下的空中计算技术[J]. 中兴通讯技术, 2019, 25(1): 29-34.
CHEN L, WEI G. Over-the-air computation for future networks [J]. ZTE Technology Journal, 2019, 25(1): 29-34.
[4] 王丰, 李宇龙, 林志飞, 等. 基于计算吞吐量最大化的能量采集边缘计算系统在线资源优化配置[J]. 广东工业大学学报, 2022, 39(4): 17-23.
WANG F, LI Y L, LIN Z F, et al. An online resource allocation design for computation capacity maximization in energy harvesting mobile edge computing systems [J]. Journal of Guangdong University of Technology, 2022, 39(4): 17-23.
[5] ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107(8): 1738-1762.
[6] WANG F, XU J, DING Z G. Multi-antenna NOMA for computation offloading in multiuser mobile edge computing systems [J]. IEEE Transactions on Communications, 2018, 67(3): 2450-2463.
[7] GOLDENBAUM M, BOCHE H, STANCZAK S. Harnessing interference for analog function computation in wireless sensor networks [J]. IEEE Transactions on Signal Processing, 2013, 61(20): 4893-4906.
[8] SHI G X, GUO S S, YE J, et al. Multiple parallel federated learning via over-the-air computation [J]. IEEE Open Journal of the Communications Society, 2022, 3: 1252-1264.
[9] WANG S, HONG Y C, WANG R, et al. Edge federated learning via unit-modulus over-the-air computation [J]. IEEE Transactions on Communications, 2022, 70(5): 3141-3156.
[10] NAZER B, GASTPAR M. Computation over multiple-access channels [J]. IEEE Transactions on Information Theory, 2007, 53(10): 3498-3516.
[11] GOLDENBAUM M, STANCZAK S. Robust analog function computation via wireless multiple-access channels [J]. IEEE Transactions on Communications, 2013, 61(9): 3863-3877.
[12] GOLDENBAUM M, BOCHE H, STANCZAK S. Nomographic functions: efficient computation in clustered gaussian sensor networks [J]. IEEE Transactions on Wireless Communications, 2014, 14(4): 2093-2105.
[13] CHEN L, ZHAO N, CHEN Y F, et al. Over-the-air computation for IoT networks: computing multiple functions with antenna arrays [J]. IEEE Internet of Things Journal, 2018, 5(6): 5296-5306.
[14] WANG F, XU J, LAU V K N, et al. Amplify-and-forward relaying for hierarchical over-the-air computation [J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10529-10543.
[15] WANG F, LAU V K N. Multi-level over-the-air aggregation of mobile edge computing over D2D wireless networks [J]. IEEE Transactions on Wireless Communications, 2022, 21(10): 8337-8353.
[16] LIU W C, ZANG X, LI Y H, et al. Over-the-air computation systems: optimization, analysis and scaling laws [J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5488-5502.
[17] ZHU G X, HUANG K B. MIMO over-the-air computation for high-mobility multimodal sensing [J]. IEEE Internet of Things Journal, 2019, 6(4): 6089-6103.
[18] HU L, WANG Z B, ZHU H B, et al. RIS-assisted over-the-air federated learning in millimeter wave MIMO networks [J]. Journal of Communications and Information Networks, 2022, 7(2): 145-156.
[19] CAO X W, ZHU G X, XU J, et al. Optimized power control for over-the-air computation in fading channels [J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7498-7513.
[20] BASARAN S T, KURT G K, CHATZIMISIOS P. Energy-efficient over-the-air computation scheme for densely deployed IoT networks [J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3558-3565.
[21] VISSER H J, VULLERS R J M. RF energy harvesting and transport for wireless sensor network applications: principles and requirements [J]. Proceedings of the IEEE, 2013, 101(6): 1410-1423.
[22] WANG F, XU J, CUI S G. Optimal energy allocation and task offloading policy for wireless powered mobile edge computing systems [J]. IEEE Transactions on Wireless Communications, 2020, 19(4): 2443-2459.
[23] LI X Y, ZHU G X, GONG Y, et al. Wirelessly powered data aggregation for IoT via over-the-air function computation: beamforming and power control [J]. IEEE Transactions on Wireless Communications, 2019, 18(7): 3437-3452.
[24] WANG Z B, SHI Y M, ZHOU Y, et al. Wireless-powered over-the-air computation in intelligent reflecting surface-aided IoT networks [J]. IEEE Internet of Things Journal, 2021, 8(3): 1585-1598.
[25] FARAJZADEH A, ERCETIN O, YANIKOMEROGLU H. Mobility-assisted over-the-air computation for backscatter sensor networks [J]. IEEE Wireless Communications Letters, 2020, 9(5): 675-678.
[26] BOYD S, VANDENBERGHE L. Convex optimization[M]. UK: Cambridge University Press, 2004.
[1] 张欣, 王振友. 概率条件下基于双目标交替优化的知识表示模型[J]. 广东工业大学学报, 2022, 39(04): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!