广东工业大学学报

• • 上一篇    下一篇

Sentinel-1数据在极化时序InSAR技术中的适用性分析

黄恒威1, 吴希文2, 王华2   

  1. 1. 广东工业大学 信息工程学院, 广东 广州 510006;
    2. 广东工业大学 土木与交通工程学院, 广东 广州 510006
  • 收稿日期:2023-07-10 出版日期:2024-05-25 发布日期:2024-05-25
  • 通信作者: 吴希文(1983-),男,教授,博士生导师,主要研究方向为InSAR与地表形变监测,E-mail:hayman.ng@foxmail.com
  • 作者简介:黄恒威(1999-),男,硕士研究生,主要研究方向为InSAR与地表形变监测,E-mail:154898503@qq.com
  • 基金资助:
    国家自然科学基金资助面上项目(42274016);广东省林业科学数据中心(2021B1212100004);广东省自然科学基金(2021A1515011483)

An Applicability Analysis of Sentinel-1 Data in Polarization Time-series InSAR Technology

Huang Heng-wei1, Ng Alex Hay-Man2, Wang Hua2   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-07-10 Online:2024-05-25 Published:2024-05-25

摘要: Sentinel-1数据已经被广泛地应用于时序InSAR(Time-series Interferometric Synthetic Aperture Radar, TS-InSAR) 技术。为了分析Sentinel-1双极化数据在极化时序InSAR (Polarimetric Persistent Scatterer Interferometry, PolPSI) 技术中的适用性,本文基于47景Sentinel-1双极化影像,利用TS-InSAR技术和PolPSI技术对深圳市和中山市进行了地表形变监测。结果表明,使用了Sentinel-1数据的PolPSI技术可以通过分析像元的极化信息(散射机制或统计特性) 得到更多永久散射体(Persistent Scatterer, PS) 候选点;PolPSI技术在参考网络弧上的平均时间相干性较低,但该技术可以提供更多的高质量弧(时间相干性大于0.6);PolPSI技术提高了城市地表监测中PS观测点的密度。综上所述,与TS-InSAR技术相比,利用了Sentinel-1数据的极化时序InSAR技术可以在城市地表提供更详细且更精确的形变监测信息。

关键词: 沉降, PolPSI, 时序InSAR, 双极化, Sentinel-1

Abstract: Sentinel-1 data have been widely applied in the Time-series Interferometric Synthetic Aperture Radar (TS-InSAR) technology. To assess the applicability of dual-polarization data from the Sentinel-1 satellite in Polarimetric Persistent Scatterer Interferometry (PolPSI) technology, based on 47 dual-polarization Sentinel-1 images, the surface deformation of Shenzhen and Zhongshan is monitored using both the TS-InSAR technology and the PolPSI technology. The results show that the PolPSI technology using Sentinel-1 data can identify a greater number of Persistent Scatterer (PS) candidates by analyzing the polarization information (scattering mechanism or statistical characteristic) of pixels. The PolPSI technology exhibits lower average temporal coherence on the reference network arc, but it can provide a greater number of high-quality arcs (with a temporal coherence greater than 0.6) . The PolPSI technology can increase the density of PS in urban surface monitoring. In summary, PolPSI technology utilizing Sentinel-1 data can provide more detailed and accurate deformation monitoring information on urban surface compared to TS-InSAR technology.

Key words: subsidence, PolPSI, time-series InSAR, dual-polarization, Sentinel-1

中图分类号: 

  • TU196
[1] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
[2] FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
[3] NG A H-M, GE L, LI X, et al. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry [J]. Journal of Geodesy, 2012, 86(6): 375-392.
[4] PIPIA L, FABREGAS X, AGUASCA A, et al. Polarimetric differential SAR interferometry: first results with ground-based measurements [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1): 167-171.
[5] SHEN P, WANG C, LU L, et al. A novel polarimetric PSI method using trace moment-based statistical properties and total power interferogram construction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[6] NAVARRO-SANCHEZ V D, LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F. A contribution of polarimetry to satellite differential SAR interferometry: increasing the number of pixel candidates [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 276-280.
[7] 陈佳炜, 吴希文, 王华, 等. 基于双极化时序InSAR技术的地表形变监测[J]. 广东工业大学学报, 2022, 39(3): 77-82.
CHEN J W, NG A H-M, WANG H, et al. Surface deformation monitoring based on dual-polarization time series InSAR technology [J]. Journal of Guangdong University of Technology, 2022, 39(3): 77-82.
[8] 赵峰, 张雷昕, 王腾, 等. 城市地表形变的双极化Sentinel-1数据极化时序InSAR技术监测[J]. 武汉大学学报(信息科学版) , 2022, 47(9): 1507-1514.
ZHAO F, ZHANG L X, WANG T, et al. Polarimetric persistent scatterer interferometry for urban ground deformation monitoring with Sentinel-1 dual polarimetric data [J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1507-1514.
[9] 汪云甲, 原刚, 王腾, 等. 煤田隐蔽火源多源遥感探测研究[J]. 武汉大学学报(信息科学版) , 2022, 47(10): 1651-1661.
WANG Y J, YUAN G, WANG T, et al. Research on multi-source remote sensing detection of concealed fire sources in coalfields [J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1651-1661.
[10] ZHAO F, WANG T, ZHANG L, et al. Polarimetric persistent scatterer interferometry for ground deformation monitoring with VV-VH Sentinel-1 data[J] Remote Sensing2022, 14(2) :309.
[11] NG A H-M, GE L, LI X. Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data [J]. Remote Sensing of Environment, 2015, 159: 86-101.
[12] CLOUDE S R, PAPATHANASSIOU K P. Polarimetric optimisation in radar interferometry [J]. Electronics Letters, 1997, 33(13): 1176-8.
[13] MULLISSA A G, TOLPEKIN V, STEIN A, et al. Polarimetric differential SAR interferometry in an arid natural environment [J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 59: 9-18.
[14] SHAMSHIRI R, NAHAVANDCHI H, MOTAGH M. Persistent scatterer analysis using dual-polarization Sentinel-1 data: contribution from VH channel [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3105-3112.
[15] ANFINSEN S N, DOULGERIS A P, ELTOFT T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3795-3809.
[16] LEE J S, POTTIER E. Polarimetric radar imaging : from basics to applications[M]. Polarimetric Radar Imaging : From Basics to Applications, 2009.
[17] LEE J S, JURKEVICH L, DEWAELE P, et al. Speckle filtering of synthetic aperture radar images: a review [J]. Remote Sensing Reviews, 1994, 8(4): 313-340.
[18] SHEN P, WANG C, HU J, et al. Interferometric phase optimization based on PolInSAR total power coherency matrix construction and joint polarization-space nonlocal estimation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[1] 陈佳炜, 吴希文, 王华, 陈炳杰. 基于双极化时序InSAR技术的地表形变监测[J]. 广东工业大学学报, 2022, 39(03): 77-82.
[2] 戴宜韦, 吴希文, 闵新颖, 王华, 朱焕廉, 彭林才. 利用时间序列InSAR技术对珠江三角洲主要城市进行地面变形监测研究[J]. 广东工业大学学报, 2019, 36(04): 92-98.
[3] 吴海翔, 王华, 黄秀汝, Carolina Pagli, 杨泽鑫. 利用过采样方法提高矿区沉降干涉图的相干性[J]. 广东工业大学学报, 2015, 32(3): 123-126.
[4] 杨洪镅1,2. 强夯法在湿陷性黄土地基中的应用[J]. 广东工业大学学报, 2012, 29(1): 15-18.
[5] 黄辉, 李冬梅, 阮彩群, 何娜, 任毅, 刘春柳. 高分子絮凝剂对水厂排泥水的调质效果与絮凝形态学特性[J]. 广东工业大学学报, 2011, 28(2): 12-16.
[6] 罗志强; . 公路路桥(涵)过渡段结构设计技术分析[J]. 广东工业大学学报, 2007, 24(2): 64-68.
[7] 谭世霖; 罗志强; . 软基路基沉降系数的影响因素分析[J]. 广东工业大学学报, 2007, 24(1): 66-69.
[8] 罗志强; . 软基硬壳层对路基工程的作用和利用分析[J]. 广东工业大学学报, 2006, 23(2): 132-137.
[9] 林淦; 罗志强; . 高等级公路路桥过渡段结构的设计与施工研究[J]. 广东工业大学学报, 2003, 20(1): 57-60.
[10] 谢勇利; 罗志强; . 桥头路堤沉降防治设计存在问题的研究[J]. 广东工业大学学报, 2002, 19(3): 60-64.
[11] 沈军; 刘勇健; . 人工神经网络在单桩沉降预测中的应用[J]. 广东工业大学学报, 1997, 14(1): 115-120.
[12] 罗志强. 饱和粘性土地基沉降与固结变量的计算分析[J]. 广东工业大学学报, 1996, 13(3): 100-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!