广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (03): 62-70,109.doi: 10.12052/gdutxb.230052
冯广1, 鲍龙2
Feng Guang1, Bao Long2
摘要: 随着深度学习方法的发展,理想环境下基于可见光的人脸识别精度和速度已经达到优秀的水平。但是在弱光等复杂环境下,由于缺少光源,可见光图像无法体现人脸细节,导致人脸识别效果下降甚至失效。为了解决这一问题,提出一种基于红外可见光融合的复杂环境下人脸识别方法。首先,针对低照度环境提出联合CNN(Convolutional Neural Network) 和Transformer的红外与可见光融合识别网络,并联CNN和视觉Transformer组成单模态特征融合模块,充分利用源图像的局部细节信息和全局上下文信息。同时,提出一种基于模态平均差异度的多模态特征融合策略,强化对源图像不同区域特征的差异化表达。其次,针对实际应用中融合识别网络模型大、速度慢的问题提出轻量化人脸识别网络MobileFaceNet-Coo和基于边云协同的自适应识别策略,通过图像质量选择识别模型,有效利用硬件资源。实验结果表明,弱光条件下,融合红外光与仅使用可见光图像相比,识别率提升了13.96个百分点。同时,将本方法应用实际项目中,结果表明:本方法在复杂环境下,能提高人脸识别的实时性和准确率。
中图分类号:
[1] SINGH R, AHMED T, SINGH R, et al. Identifying tiny faces in thermal images using transfer learning [J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(5): 1957-1966. [2] 马娜. 基于高光谱图像的人脸识别算法和实验研究[D]. 济南: 山东师范大学, 2017. [3] 郭婷, 张天序, 郭诗嘉. 一种红外图像和宽光谱融合的人脸识别算法[J]. 武汉工程大学学报, 2022, 44(3): 320-324. GUO T, ZHAG T X, GUO S J. A face recognition algorithm based on infrared image and wide spectrum fusion [J]. Journal of Wuhan Engineering University, 2022, 44(3): 320-324. [4] 谢志华, 李毅, 牛杰一. 联合分块谱带优选和深度特征的高光谱人脸识别[J]. 中国图象图形学报, 2021, 26(12): 2870-2878. XIE Z H, LI Y, NIU J Y. Hyperspectral face recognition combining block spectral band optimization and depth feature [J]. Chinese Journal of Image Graphics, 2021, 26(12): 2870-2878. [5] LI H, WU X J. DenseFuse: a fusion approach to infrared and visible images [J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623. [6] MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion [J]. Information Fusion, 2019, 48: 11-26. [7] PRABHAKAR K R, SRIKAR V S, BABU R V. Deepfuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 4714-4722. [8] KIM M, JAIN A K, LIU X. AdaFace: quality adaptive margin for face recognition[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 18750-18759. [9] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks [J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. [10] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 13713-13722. [11] CHEN S, LIU Y, GAO X, et al. MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices [EB/OL]. arXiv: 1804.07573(2019-03-21) [2023-03-01].https://arxiv.org/ftp/arxiv/papers/1804/1804.07573.pdf. [12] MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[EB/OL]. arXiv: 1807.11164(2018-07-30) [2023-03-10].https://arxiv.org/abs/1807.11164. [13] HUANG G, LIU Z, VAN Der M L , et al. 2017. Densely connected convolutional networks[J]. IEEE Computer Society, 2017: 2261-2269. [14] ZAMIR S W, ARORA A, KHAN S , et al. Restormer: efficient transformer for high-resolution image restoration[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway: IEEE Press, 2022: 5718-5729. [15] DAI C . Attentional feature fusion[C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2021: 3560-3569. [16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision(ECCV) . Munich: Springer, 2018: 3-19. [17] YI D, LEI Z, LIAO S, et al. Learning face representation from scratch [J]. Computer Science, 2014, 29(1): 51-59. [18] STAN L, DONG Y, ZHEN L, et al. The casia nir-vis 2.0 face database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2013: 348-353. [19] HUANG G B, RAMESH M, BERG T, et al. Labeled Faces in the Wild: a database for studying face recognition in unconstrained environments[EB/OL]. (2008-10-01) [2023-03-10].https://people.cs.umass.edu/~elm/papers/Huang_eccv2008-lfw.pdf [20] ZHENG T, DENG W, HU J. Cross-pose lfw: a database for studying corsspose face recognition in unconstrained environments[EB/OL]. arXiv: 1708.08197(2017-08-28) [2023-03-10]. https://arxiv.org/abs/1708.08197v1. [21] MOSCHOGLOU S, PAPAIOANNOU A, SAGONAS C, et al. Agedb: the first manually collected, in-the-wild age database[C]//Proceedings of the IEEE Conference on Compute Vision and Pattern Recognition Workshops. [S.l.]: IEEE, 2017: 51-59. [22] TANG L, YUAN J, MA J. Image fusion in the loop of high-level vision tasks: a semantic-aware real-time infrared and visible image fusion network [J]. Information Fusion, 2022, 82: 28-42. [23] MA J, ZHANG H, SHAO Z, et al. GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 99: 1. [24] PANETTA, KAREN, QIANWEN W, et al. A comprehensive database for benchmarking imaging systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 509-520. |
[1] | 郭傲, 许柏炎, 蔡瑞初, 郝志峰. 基于时序对齐的风格控制语音合成算法[J]. 广东工业大学学报, 2024, 41(02): 84-92. |
[2] | 杨镇雄, 谭台哲. 基于生成对抗网络的低光照图像增强算法[J]. 广东工业大学学报, 2024, 41(01): 55-62. |
[3] | 赖志茂, 章云, 李东. 基于Transformer的人脸深度伪造检测技术综述[J]. 广东工业大学学报, 2023, 40(06): 155-167. |
[4] | 曾碧, 任万灵, 陈云华. 基于CycleGAN的非配对人脸图片光照归一化方法[J]. 广东工业大学学报, 2018, 35(05): 11-19. |
[5] | 吴建宏, 李伟彤, 廖捷. 一种基于小波-Contourlet的改进图像融合算法[J]. 广东工业大学学报, 2011, 28(1): 12-15. |
[6] | 王婷婷, 苏成悦, 王娴, 周 镇. 基于多幅图像的有效点扩散函数的高精度测量[J]. 广东工业大学学报, 2010, 27(3): 51-55. |
[7] | 蔡正, 王福龙, 徐爱辉. 一种新的图像距离在人脸识别中的应用[J]. 广东工业大学学报, 2010, 27(3): 64-67. |
[8] | 黄诚; 王福龙; 刘晓亮; . 指数衰减下的KFDA方法及其人脸识别[J]. 广东工业大学学报, 2009, 26(4): 62-64. |
[9] | 刘晓亮; 王福龙; 黄诚; 曾爱华; . 一种加权的核Fisher鉴别分析在人脸识别中的应用[J]. 广东工业大学学报, 2009, 26(4): 65-69. |
[10] | 张辰; 潘保昌; 郑胜林; 卢毅涛;. 一种矢量倍增算法的神经网络人脸识别方法[J]. 广东工业大学学报, 2006, 23(3): 108-112. |
[11] | 郝一方; 李锋; . 惯性矩的图像融合的新方法[J]. 广东工业大学学报, 2006, 23(1): 90-95. |
|