广东工业大学学报

• • 上一篇    下一篇

基于等离子体微腔增强光吸收的近红外偏振不敏感光电探测器

尹良伍1, 郎钰文2, 刘文杰1   

  1. 1. 广东工业大学 信息工程学院, 广东 广州 510006;
    2. 广东工业大学 物理与光电工程学院, 广东 广州 510006
  • 收稿日期:2023-02-28 出版日期:2024-05-25 发布日期:2024-05-25
  • 通信作者: 刘文杰(1988-),女,副教授,硕士生导师,主要研究方向为毫米波器件、高速探测器,E-mail:wjliu@gdut.edu.cn
  • 作者简介:尹良伍(1998-),男,硕士研究生,主要研究方向为半导体器件设计
  • 基金资助:
    国家自然科学基金资助项目 (61975037)

Near-infrared Polarization-insensitive Photodetector Based on Plasmonic Cavity Enhanced Light Absorption

Yin Liang-wu1, Lang Yu-wen2, Liu Wen-jie1   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-02-28 Online:2024-05-25 Published:2024-05-25

摘要: 本文提出了一种偏振不敏感的等离子体微腔光电探测器,使用二维纳米级金圆柱阵列作为等离子体电极。圆柱的二维对称性使得等离子体电极对入射光的偏振角度不敏感。通过在亚波长金属圆柱与金属反射镜之间形成金属?半导体?金属腔,在超薄区域实现光吸收的有效增强。利用时域有限差分法和有限元法,计算了光电探测器的光响应和电响应,并分析了几何参数对金纳米圆柱性能的影响。结果表明,优化参数后,器件整体光吸收率为94.7%,GaAs半导体中光吸收率可以达到81.1%,器件的响应度在5 V偏置电压、10 mW入射光功率下可以达到0.37 A/W。该器件表现出极低的偏振依赖特性,偏振角度的变化不会引起器件半导体中吸收率的变化,并且在入射角度发生变化时,吸收峰位置不发生变化,吸收响应也能够得到有效保留。

关键词: 光电探测器, 等离激元, 砷化镓, 偏振不敏感, 响应度

Abstract: A polarization-insensitive plasmonic cavity photodetector is presented using a two-dimensional nanoscale gold cylindrical array as a plasma electrode. The two-dimensional symmetry of the cylinder makes the plasma electrode insensitive to the polarization angle of the incident light. By forming a metal-semiconductor-metal cavity between a subwavelength metal cylinder and a metal reflector, effective enhancement of light absorption in the ultrathin region can be achieved. The optical and electrical responses of the photodetector were calculated using the time-domain finite difference method and the finite element method, and the effects of the geometric parameters on the performance of the gold nanocylinders were analyzed. The results show that after optimizing the parameters, the overall light absorption rate of the device is 94.7%, and the light absorption rate in GaAs semiconductor can reach 81.1%, and the responsivity of the device can reach 0.37 A/W at 5 V bias voltage and 10 mW incident light power. The device exhibits extremely low polarization-dependent characteristics, where changes in polarization angle do not cause changes in absorption in the device semiconductor, and the absorption response can be effectively preserved without changes in the position of the absorption peak when the angle of incidence changes.

Key words: photodetector, plasmonic, GaAs, polarization insensitivity, responsivity

中图分类号: 

  • O436.2
[1] MUELLER T, XIA F, AVOURIS P. Graphene photodetectors for high-speed optical communications [J]. Nature Photonics, 2010, 4(5): 297-301.
[2] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793.
[3] SUN Z, AIGOUY L, CHEN Z. Plasmonic-enhanced perovskite-graphene hybrid photodetectors[J]. Nanoscale, 2016, 8(14) : 7377-7383.
[4] SHEN L, FANG Y J, WANG D, et al. A Self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection [J]. Advanced Materials, 2016, 28(48): 10794-10800.
[5] LUO L B, ZHANG X X, LI C, et al. Fabrication of PdSe2/GaAs heterojunction for sensitive near-infrared photovoltaic detector and image sensor application [J]. Chinese Journal of Chemical Physics, 2020, 33(6): 733-742.
[6] ZHENG D S, WANG J L, HU W D, et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors [J]. Nano Letters, 2016, 16(4): 2548-2555.
[7] HAO L Z, DU Y J, WANG Z G, et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity [J]. Nanoscale, 2020, 12(13): 7358-7365.
[8] 李定昌, 黄金, 林伟杰, 等. 高倍聚光下三结砷化镓电池输出特性实验研究[J]. 广东工业大学学报, 2015, 32(4): 25-29.
LI D C, HUANG J, LIN W J, et al. Experimental study of output characteristics of triple-junction GaAs cells under high-powered concentrator [J]. Journal of Guangdong University of Technology, 2015, 32(4): 25-29.
[9] 姚源卫, 蔡敏, 屈晔, 三元GaAS/ALAS准周期超晶格系统的电子隧穿透射谱[J]. 广东工业大学学报, 2002, 19(3) : 14-17.
YAO Y W, CAI M, QU Y. The light binding of the three tile quasiperiodic semiconductor superlattices[J]. Journal of Guangdong University of Technology, 2002, 19(3) : 14-17.
[10] DAS N, MASOULEH F F, MASHAYEKHI H R. Light absorption and reflection in nanostructured GaAs metal-semiconductor-metal photodetectors [J]. IEEE Transactions on Nanotechnology, 2014, 13(5): 982-989.
[11] ZHU X T, LIN F Y, ZHANG Z H, et al. Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure [J]. Nano Letters, 2020, 20(4): 2654-2659.
[12] DAI X, ZHANG S, WANG Z L, et al. GaAs/AlGaAs nanowire photodetector [J]. Nano Letters, 2014, 14(5): 2688-2693.
[13] HUSSAIN A A, SHARMA B, BARMAN T, et al. Self-powered broadband photodetector using plasmonic titanium nitride [J]. ACS Applied Materials & Interfaces, 2016, 8(6): 4258-4265.
[14] JEE S W, ZHOU K, KIM D W. A silicon nanowire photodetector using Au plasmonic nanoantennas [J]. Nano Convergence, 2014, 1(29): 1-7.
[15] BAHARI A, SALIANEH M G. High-quantum efficiency of the plasmonic photodetectors-based on coupling between Ag nanoparticles and Ag nanograting electrodes [J]. Plasmonics, 2018, 14(2): 415-423.
[16] YANG Y J, JEON J, PARK J H, et al. Plasmonic transition metal carbide electrodes for high-performance InSe photodetectors [J]. ACS NANO, 2019, 13(8): 8804-8810.
[17] ALI R K, NIKOUFARD M. Hybrid plasmonic ring-resonator uni-traveling carrier pin-photodetector on InGaAsP/InP layer stack [J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3221-3228.
[18] NUSIR A I, HILL A M, MANASREH M O, et al. Near-infrared metal-semiconductor-metal photodetector based on semi-insulating GaAs and interdigital electrodes [J]. Photonics Research, 2014, 3(1): 1-4.
[19] SHARAF R, DANESHMANDI O, RAHIM S G, et al. A new GaAs metal-semiconductor-metal photodetector based on hybrid plasmonic structure to improve the optical and electrical responses [J]. Plasmonics, 2016, 11(2): 441-448.
[20] WU C Y, ZENG B, ZHOU K, et al. Grating perovskite enhanced polarization-sensitive GaAs-based photodetector [J]. IEEE Transactions on Electron Devices, 2022, 69(5): 2469-2473.
[21] KARL P, MENNLE S, UBL M, et al. Tunable infrared high absorbing polarization independent niobium nitride plasmonic perfect absorber nanowire photodetectors [J]. Optical Materials Express, 2022, 12(7): 2453-2461.
[22] 孔姣. 基于表面等离子体增强的太赫兹器件研究[D]. 福州: 福州大学, 2017.
[23] BURFORD N, EL-SHENAWEE M. Computational modeling of plasmonic thin-film terahertz photoconductive antennas [J]. Journal of the Optical Society of America B-Optical Physics, 2016, 33(4): 748-759.
[24] BASHIRPOUR M, GHORBANI S, KOLAHDOUZ M, et al. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure [J]. RSC Advances, 2017, 7(83): 53010-53017.
[25] SUN Z, FANG Y. Fabry-Pérot interference cavity length tuned by plasmonic nanoparticle metasurface for nanophotonic device design [J]. ACS Applied Nano Materials, 2020, 3(11): 10732-10738.
[26] ZHAO X W, MOEEN M, TOPRAK M S, et al. Design impact on the performance of Ge PIN photodetectors [J]. Journal of Materials Science:Materials in Electronics, 2019, 31(1): 18-25.
[1] 余芳盈, 欧玮辉, 王玉洁, 何军. 树枝状介孔二氧化硅负载纳米银用于太阳能驱动的清洁水生产[J]. 广东工业大学学报, 2024, 41(03): 36-42.
[2] 李定昌, 黄金, 林伟杰, 谢泽扬. 高倍聚光下三结砷化镓电池输出特性实验研究[J]. 广东工业大学学报, 2015, 32(04): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!