尹良伍1, 郎钰文2, 刘文杰1
Yin Liang-wu1, Lang Yu-wen2, Liu Wen-jie1
摘要: 本文提出了一种偏振不敏感的等离子体微腔光电探测器,使用二维纳米级金圆柱阵列作为等离子体电极。圆柱的二维对称性使得等离子体电极对入射光的偏振角度不敏感。通过在亚波长金属圆柱与金属反射镜之间形成金属?半导体?金属腔,在超薄区域实现光吸收的有效增强。利用时域有限差分法和有限元法,计算了光电探测器的光响应和电响应,并分析了几何参数对金纳米圆柱性能的影响。结果表明,优化参数后,器件整体光吸收率为94.7%,GaAs半导体中光吸收率可以达到81.1%,器件的响应度在5 V偏置电压、10 mW入射光功率下可以达到0.37 A/W。该器件表现出极低的偏振依赖特性,偏振角度的变化不会引起器件半导体中吸收率的变化,并且在入射角度发生变化时,吸收峰位置不发生变化,吸收响应也能够得到有效保留。
中图分类号:
[1] MUELLER T, XIA F, AVOURIS P. Graphene photodetectors for high-speed optical communications [J]. Nature Photonics, 2010, 4(5): 297-301. [2] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793. [3] SUN Z, AIGOUY L, CHEN Z. Plasmonic-enhanced perovskite-graphene hybrid photodetectors[J]. Nanoscale, 2016, 8(14) : 7377-7383. [4] SHEN L, FANG Y J, WANG D, et al. A Self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection [J]. Advanced Materials, 2016, 28(48): 10794-10800. [5] LUO L B, ZHANG X X, LI C, et al. Fabrication of PdSe2/GaAs heterojunction for sensitive near-infrared photovoltaic detector and image sensor application [J]. Chinese Journal of Chemical Physics, 2020, 33(6): 733-742. [6] ZHENG D S, WANG J L, HU W D, et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors [J]. Nano Letters, 2016, 16(4): 2548-2555. [7] HAO L Z, DU Y J, WANG Z G, et al. Wafer-size growth of 2D layered SnSe films for UV-Visible-NIR photodetector arrays with high responsitivity [J]. Nanoscale, 2020, 12(13): 7358-7365. [8] 李定昌, 黄金, 林伟杰, 等. 高倍聚光下三结砷化镓电池输出特性实验研究[J]. 广东工业大学学报, 2015, 32(4): 25-29. LI D C, HUANG J, LIN W J, et al. Experimental study of output characteristics of triple-junction GaAs cells under high-powered concentrator [J]. Journal of Guangdong University of Technology, 2015, 32(4): 25-29. [9] 姚源卫, 蔡敏, 屈晔, 三元GaAS/ALAS准周期超晶格系统的电子隧穿透射谱[J]. 广东工业大学学报, 2002, 19(3) : 14-17. YAO Y W, CAI M, QU Y. The light binding of the three tile quasiperiodic semiconductor superlattices[J]. Journal of Guangdong University of Technology, 2002, 19(3) : 14-17. [10] DAS N, MASOULEH F F, MASHAYEKHI H R. Light absorption and reflection in nanostructured GaAs metal-semiconductor-metal photodetectors [J]. IEEE Transactions on Nanotechnology, 2014, 13(5): 982-989. [11] ZHU X T, LIN F Y, ZHANG Z H, et al. Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure [J]. Nano Letters, 2020, 20(4): 2654-2659. [12] DAI X, ZHANG S, WANG Z L, et al. GaAs/AlGaAs nanowire photodetector [J]. Nano Letters, 2014, 14(5): 2688-2693. [13] HUSSAIN A A, SHARMA B, BARMAN T, et al. Self-powered broadband photodetector using plasmonic titanium nitride [J]. ACS Applied Materials & Interfaces, 2016, 8(6): 4258-4265. [14] JEE S W, ZHOU K, KIM D W. A silicon nanowire photodetector using Au plasmonic nanoantennas [J]. Nano Convergence, 2014, 1(29): 1-7. [15] BAHARI A, SALIANEH M G. High-quantum efficiency of the plasmonic photodetectors-based on coupling between Ag nanoparticles and Ag nanograting electrodes [J]. Plasmonics, 2018, 14(2): 415-423. [16] YANG Y J, JEON J, PARK J H, et al. Plasmonic transition metal carbide electrodes for high-performance InSe photodetectors [J]. ACS NANO, 2019, 13(8): 8804-8810. [17] ALI R K, NIKOUFARD M. Hybrid plasmonic ring-resonator uni-traveling carrier pin-photodetector on InGaAsP/InP layer stack [J]. IEEE Transactions on Electron Devices, 2020, 67(8): 3221-3228. [18] NUSIR A I, HILL A M, MANASREH M O, et al. Near-infrared metal-semiconductor-metal photodetector based on semi-insulating GaAs and interdigital electrodes [J]. Photonics Research, 2014, 3(1): 1-4. [19] SHARAF R, DANESHMANDI O, RAHIM S G, et al. A new GaAs metal-semiconductor-metal photodetector based on hybrid plasmonic structure to improve the optical and electrical responses [J]. Plasmonics, 2016, 11(2): 441-448. [20] WU C Y, ZENG B, ZHOU K, et al. Grating perovskite enhanced polarization-sensitive GaAs-based photodetector [J]. IEEE Transactions on Electron Devices, 2022, 69(5): 2469-2473. [21] KARL P, MENNLE S, UBL M, et al. Tunable infrared high absorbing polarization independent niobium nitride plasmonic perfect absorber nanowire photodetectors [J]. Optical Materials Express, 2022, 12(7): 2453-2461. [22] 孔姣. 基于表面等离子体增强的太赫兹器件研究[D]. 福州: 福州大学, 2017. [23] BURFORD N, EL-SHENAWEE M. Computational modeling of plasmonic thin-film terahertz photoconductive antennas [J]. Journal of the Optical Society of America B-Optical Physics, 2016, 33(4): 748-759. [24] BASHIRPOUR M, GHORBANI S, KOLAHDOUZ M, et al. Significant performance improvement of a terahertz photoconductive antenna using a hybrid structure [J]. RSC Advances, 2017, 7(83): 53010-53017. [25] SUN Z, FANG Y. Fabry-Pérot interference cavity length tuned by plasmonic nanoparticle metasurface for nanophotonic device design [J]. ACS Applied Nano Materials, 2020, 3(11): 10732-10738. [26] ZHAO X W, MOEEN M, TOPRAK M S, et al. Design impact on the performance of Ge PIN photodetectors [J]. Journal of Materials Science:Materials in Electronics, 2019, 31(1): 18-25. |
[1] | 余芳盈, 欧玮辉, 王玉洁, 何军. 树枝状介孔二氧化硅负载纳米银用于太阳能驱动的清洁水生产[J]. 广东工业大学学报, 2024, 41(03): 36-42. |
[2] | 李定昌, 黄金, 林伟杰, 谢泽扬. 高倍聚光下三结砷化镓电池输出特性实验研究[J]. 广东工业大学学报, 2015, 32(04): 25-29. |
|