广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (03): 43-47.doi: 10.12052/gdutxb.230153

• 材料科学与技术 • 上一篇    下一篇

低层数反蛋白石光子晶体薄膜的制备及光学性质研究

袁宸, 肖也   

  1. 广东工业大学 材料与能源学院, 广东 广州 510006
  • 收稿日期:2023-09-28 出版日期:2024-05-25 发布日期:2024-06-14
  • 通信作者: 肖也(1988-),男,讲师,博士,主要研究方向为半导体功能材料,E-mail:yexiao@gdut.edu.cn
  • 作者简介:袁宸(1999-),男,硕士研究生,主要研究方向为半导体薄膜材料,E-mail:752308289@qq.com
  • 基金资助:
    国家自然科学基金青年基金资助项目(51602065);广州市科技计划项目(2023A04J0975)

Preparation and Optical Properties Study of Low-layer Inverse Opal Photonic Crystal Thin Films

Yuan Chen, Xiao Ye   

  1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2023-09-28 Online:2024-05-25 Published:2024-06-14

摘要: 本文构筑了一种低层数SnO2反蛋白石光子晶体结构薄膜。基于反蛋白石光子晶体结构材料特有的有序多孔结构及慢光子效应,可有效提升光吸收,使其在太阳能电池、光催化等领域发挥出巨大的作用。本文通过无皂乳液聚合法,控制单体和引发剂的使用量,制备了3种粒径大小的聚苯乙烯(Polystyrene,PS)微球;采用垂直沉积自组装法,同时在分散液中滴加少量十二烷基硫酸钠(Sodium Dodecyl Sulfate,SDS),制备低层数PS微球蛋白石模板;最后通过牺牲模板法制备低层数SnO2反蛋白石光子晶体薄膜。该结构薄膜相比于平面结构,在具有较高的比表面积的同时,在可见光波长范围内,吸光度与漫反射率均有所提升。该反蛋白石光子晶体薄膜为设计钙钛矿太阳能电池的电子传输层提供了新策略。

关键词: 光子晶体, 反蛋白石, 自组装, 二氧化锡

Abstract: A low-layer SnO2 photonic crystal thin film with an inverse opal structure was constructed in this study. Based on the unique ordered porous structure and slow photon effect of inverse opal photonic crystal materials, it effectively enhances light absorption and plays a significant role in fields such as solar cells and photocatalysis. In this study, three sizes of polystyrene (Polystyrene, PS) microspheres were prepared using a soap-free emulsion polymerization method, with controlled amounts of monomers and initiators. A small amount of sodium dodecyl sulfate (Sodium Dodecyl Sulfate, SDS) was added dropwise to the dispersion solution during vertical deposition self-assembly to prepare low-layer PS opal templates. Finally, a low-layer SnO2 inverse opal photonic crystal film was obtained using a sacrificial template method. Compared with planar structures, this film exhibits enhanced light absorption and diffuse reflectance while maintaining a higher specific surface area within the visible wavelength range. The inverse opal photonic crystal film provides a new strategy for designing electron transport layers in perovskite solar cells.

Key words: photonic crystal, inverse opal, self-assembly, tin dioxide

中图分类号: 

  • 1 O472+.8
[1] 周海华, 宋延林. 光子晶体的制备和应用研究进展[J]. 数字印刷, 2021(5): 1-11.
ZHOU H H, SONG Y L. Research progress of fabrication and applications of photonic crystals [J]. Printing and Digital Media Technology Study, 2021(5): 1-11.
[2] 寇东辉, 马威, 张淑芬, 等. 一维光子晶体结构色材料的应用研究进展[J]. 化工进展, 2018, 37(4): 1468-1479.
KOU D H, MA W, ZHANG S F, et al. Research progress on applications of one-dimensional photonic crystal materials with structural colors [J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1468-1479.
[3] 陈诚, 董志强, 陈昊文, 等. 二维光子晶体[J]. 化学进展, 2018, 30(6): 775-784.
CHEN C, DONG Z Q, CHEN H W, et al. Two-dimensional photonic crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[4] 万勇, 蔡仲雨, 赵修松, 等. 自组装方法与三维光子晶体制作[J]. 中国科学:化学, 2010, 40(12): 1794-1806.
WAN Y, CAI Z Y, ZHAO X S, et al. Self-assembly method and the fabrication of 3-D photonic crystals [J]. Scientia Sinica (Chimica) , 2010, 40(12): 1794-1806.
[5] 李会鹏, 孙新宇, 赵华, 等. 反蛋白石结构光催化剂的制备与应用进展[J]. 分子催化, 2021, 35(1): 65-75.
LI H P, SUN X Y, ZHAO H, et al. Preparation and application of inverse opal photocatalyst [J]. Journal of Molecular Catalysis (China), 2021, 35(1): 65-75.
[6] 褚召冉, 陈功, 赵雪伶, 等. 光子晶体在光催化领域的研究进展[J]. 材料工程, 2021, 49(8): 43-53.
CHU Z R, CHEN G, ZHAO X L, et al. Research progress of photonic crystals in photocatalysis [J]. Journal of Materials Engineering, 2021, 49(8): 43-53.
[7] CHEN Y K, WANG Y, FANG J, et al. Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis [J]. Chinese Journal of Catalysis, 2021, 42(1): 184-192.
[8] RONG J, JI L, YANG Z. Some key ordered macroporous composites [J]. Chinese Journal of Polymer Science, 2013, 31(9): 1204-1217.
[9] 侯宇梦, 龚䶮, 李昕, 等. 聚苯乙烯微球粒径调控与结构色的构筑[J]. 北京服装学院学报(自然科学版) , 2022, 42(1): 1-7.
HOU Y M, GONG Y, LI X, et al. Polystyrene microsphere particle size control and structural color construction [J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition) , 2022, 42(1): 1-7.
[10] 郝妙琴. 无皂乳液聚合法合成聚苯乙烯微球的研究[J]. 橡塑技术与装备, 2018, 44(16): 40-46.
HAO M Q. Synthesis of polystyrene microspheres by soap free emulsion polymerization [J]. China Rubber/Plastics Technology and Equipment, 2018, 44(16): 40-46.
[11] WANG Y X, GAO P Y, FAN X Y, et al. Effect of SnO2 annealing temperature on the performance of perovskite solar cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174.
[12] EILEEN A, WORAWUT K, MICHAL O, et al. Ordered 2D colloidal photonic crystals on gold substrates by surfactant-assisted fast-rate dip coating [J]. Small, 2014, 10(10): 1895-1901.
[13] 李壮, 须秋洁, 刘国金, 等. 基于胶体微球自组装光子晶体的结构生色[J]. 材料研究学报, 2021, 35(3): 175-183.
LI Z, XU Q J, LIU G J, et al. Structural coloration of photonic crystals based on self-assembly of colloid microspheres [J]. Chinese Journal of Materials Research, 2021, 35(3): 175-183.
[14] 潘庆, 张晓茹, 刘晗, 等. 光子晶体的透射特性[J]. 吉林大学学报(理学版) , 2020, 58(4): 969-976.
PAN Q, ZHANG X R, LIU H, et al. Transmission characteristics of photonic crystals [J]. Journal of Jilin University(Science Edition) , 2020, 58(4): 969-976.
[15] 周敬伊, 王慧, 杨辉宇, 等. 光子晶体结构色织物研究进展[J]. 化学通报, 2021, 84(10): 1008-1022.
ZHOU J Y, WANG H, YANG H Y, et al. Research progress in photonic crystal induced structural colored fabrics [J]. Chemistry, 2021, 84(10): 1008-1022.
[1] 赵泽兴, 石智伟, 左茂武. 基于Matlab GUI仿真多光束干涉形成光子晶格[J]. 广东工业大学学报, 2020, 37(03): 63-69.
[2] 张宇旋, 黄春东, 谭剑波. 聚合诱导自组装制备复杂形貌的聚合物纳米材料[J]. 广东工业大学学报, 2018, 35(06): 100-106.
[3] 刘卅, 钟春婷, 王卫卫, 王艳艳, 任力. 石英晶体微天平研究刷状聚合物的自组装过程[J]. 广东工业大学学报, 2018, 35(02): 1-5.
[4] 肖万能; 王维江; 李群; 罗俊峰; . 光学介电膜透射率色散公式的优化[J]. 广东工业大学学报, 2006, 23(1): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!