广东工业大学学报

• •    下一篇

基于光学遥感自适应偏移追踪技术的滑坡监测

谭晴1,3, 吴希文2,3, 王华4, 邝健明2   

  1. 1. 广东工业大学 信息工程学院, 广东 广州 510006;
    2. 广东工业大学 土木与交通工程学院, 广东 广州 510006;
    3. 广东工业大学 大湾区城市环境安全与绿色发展教育部重点实验室, 广东 广州 510006;
    4. 华南农业大学 资源环境学院,广东 广州 510642
  • 收稿日期:2023-06-01 出版日期:2024-05-25 发布日期:2024-06-17
  • 通信作者: 吴希文(1983-),男,教授,博士生导师,主要研究方向为InSAR与地表形变监测,E-mail:hayman.ng@gdut.edu.cn E-mail:hayman.ng@gdut.edu.cn
  • 作者简介:谭晴(2000-),男,硕士研究生,主要研究方向为InSAR与地表形变监测,E-mail:1654334401@qq.com
  • 基金资助:
    国家自然科学基金资助面上项目(42274016);广东省自然科学基金资助项目(2021A1515011483);广东省林业科学数据中心项目(2021B1212100004)

Landslide Monitoring Based on Optical Remote Sensing Adaptive Offset Tracking Method

Tan Qing1,3, Ng Alex Hay-Man2,3, Wang Hua4, Kuang Jian-ming2   

  1. 1. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    2. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China;
    3. Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China;
    4. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
  • Received:2023-06-01 Online:2024-05-25 Published:2024-06-17

摘要: 传统偏移跟踪方法主要依赖规则匹配窗口的归一化互相关(Normalized Cross Correlation, NCC) 操作。然而,在光学遥感影像分析中,规则窗口内往往存在如水体、阴影、云层等干扰因素的像素。当应用于滑坡监测时,这些干扰因素可能会导致偏移估计出现错误。为了解决这个问题,本文提出了一种自适应偏移跟踪算法。在偏移估计前,先进行预处理,识别出研究区域中水体、阴影、云层等干扰因素的位置,并生成相应的水体、阴影、云层掩膜。然后在偏移估计过程中,通过干扰因素的掩膜找出互相关窗口中干扰因素的位置,并在计算时排除互相关窗口内的干扰因素像素,以此来提高偏移估计的准确性和可靠性。通过在白格滑坡的实验验证,证明了该方法能显著提高偏移跟踪的准确性和可靠性。

关键词: 光学遥感, 归一化互相关, 白格滑坡, 自适应偏移跟踪

Abstract: Traditional offset tracking primarily relies on normalized cross correlation tracking method based on the regular matching window. However, in the analysis of optical remote sensing images, pixels representing disturbance factors such as cloud layers, water bodies, shadows are often present within the regular window. When applied to landslide monitoring, these disturbance factors may lead to errors in the offset estimation. In order to address this issue, an adaptive offset tracking algorithm is presented. Prior to the offset estimation, a pre-processing step is carried out to identify the locations of these disturbance factors in the study area and generate the corresponding masks. During offset estimation process, the disturbance factors of cross-correlation window can be found from its masks, then pixels representing disturbance factors within the cross-correlation window are excluded, thereby improving the accuracy and reliability of offset estimation experimental validation on the Baige landslide , which has demonstrated that this method can significantly enhance the accuracy and reliability of offset tracking.

Key words: optical remote sensing, normalized cross correlation, the Baige landslide, adaptive offset tracking

中图分类号: 

  • P642.22
[1] 李梦华. 基于星载雷达遥感的大梯度滑坡形变监测与失稳致灾时间预测[D]. 武汉: 武汉大学, 2019.
[2] 陈炳杰. 基于光学和雷达影像像素偏移跟踪技术的形变监测研究[D]. 广州: 广东工业大学, 2021.
[3] STUMPF A, MALET J P, PUISSANT A, et al. Monitoring of earth surface motion and geomorphologic processes by optical image correlation[J]. Land Surface Remote Sensing, 2016: 147-190.
[4] ZHAO C, LU Z. Remote sensing of landslides—a review [J]. Remote Sensing, 2018, 10(2): 279.
[5] INTRIERI E, RASPINI F, FUMAGALLI A, et al. The maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data [J]. Landslides, 2018, 15(1): 123-133.
[6] ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950-959.
[7] 陈佳炜, 吴希文, 王华, 等. 基于双极化时序InSAR技术的地表形变监测[J]. 广东工业大学学报, 2022, 39(3): 77-82.
CHEN J W, NG A H M, WANG H, et al. Surface deformation monitoring based on dual-polarization time series InSAR technology [J]. Journal of Guangdong University of Technology, 2022, 39(3): 77-82.
[8] STURKELL E, EINARSSON P, SIGMUNDSSON F, et al. Volcano geodesy and magma dynamics in iceland [J]. Journal of Volcanology and Geothermal Research, 2006, 150(1/3): 14-34.
[9] MICHEL R, AVOUAC J P, TABOURY J. Measuring near field coseismic displacements from SAR images: application to the Landers earthquake [J]. Geophysical Research Letters, 1999, 26(19): 3017-3020.
[10] PATHIER E, FIELDING E, WRINGT T, et al. Displacement field and slip distribution of the 2005 Kashmir earthquake from SAR imagery [J]. Geophysical Research Letters, 2006, 33(20): L20310.
[11] YOO J C, HAN T H. Fast normalized cross-correlation [J]. Circuits, Systems and Signal Processing, 2009, 28(6): 819-843.
[12] HU X, WANG T, LIAO M. Measuring coseismic displacements with point-like targets offset tracking [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 283-287.
[13] BAMLER R, EINEDER M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems [J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 151-155.
[14] STUMPF A, MALET J P, DELACOURT C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides [J]. Remote Sensing of Environment, 2017, 189: 40-55.
[15] BONTEMPS N, LACROIX P, DOIN M P. Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru [J]. Remote Sensing of Environment, 2018, 210: 144-158.
[16] CAI J, WANG C, MAO X, et al. An adaptive offset tracking method with SAR images for landslide displacement monitoring [J]. Remote Sensing, 2017, 9(8): 830.
[17] OTAZU X, GONZALEZ-AUDICANA M, FORS O, et al. Introduction of sensor spectral response into image fusion methods. application to wavelet-based methods [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10): 2376-2385.
[18] BOGGIONE G A. PIRES E G, SANTOS P A, et al. Simulation of a panchromatic band by spectral combination of multispectral ETM+bands[C]//PUTKONEN J. Proceedings of International Symposium on Remote Sensing of Environmental. Honolulu: IEEE, 2003: 321-324.
[19] ZHU Z, WANG S, WOODCOCK C E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images [J]. Remote Sensing of Environment, 2015, 159: 269-277.
[20] ZHU Z, WOODCOCK C E. Object-based cloud and cloud shadow detection in Landsat imagery [J]. Remote sensing of environment, 2012, 118(6): 83-94.
[21] FENG G, DING X, Li Z, et al. Calibration of an InSAR-derived coseimic deformation map associated with the 2011 Mw-9.0 Tohoku-Oki earthquake [J]. IEEE Geoscience & Remote Sensing Letters, 2012, 9(2): 302-306.
[22] MICHEL R, AVOUAC J P. Coseismic surface deformation from air photos: the Kickapoo step over in the 1992 Landers rupture [J]. Journal of Geophysical Research-Solid Earth, 2006, 111(B3): 240-247.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!