广东工业大学学报 ›› 2024, Vol. 41 ›› Issue (04): 26-33.doi: 10.12052/gdutxb.240014
卢洁楚, 傅惠
Lu Jie-chu, Fu Hui
摘要: 以CAVs为领航车的混合编队有助于实现更顺畅和安全的道路交通,但当前研究较少关注于具有多车道分布特征的混合编队形成问题。对此,本文提出了一种面向混合编队领航CAVs的博弈换道决策模型。该模型建立数学优化与博弈论相结合的换道决策机制,建立以最小化CAVs换道次数为目标的领航CAVs目标车道初始化流程,并依据CAVs博弈换道收益,更新领航CAVs目标车道,实现混合编队多车道分布。同时,基于博弈论建立CAVs与HDVs非合作博弈矩阵,综合考虑换道效率和安全性,分别设计时间和安全收益函数,量化CAVs换道风险,并使用交通软件SUMO建立微观仿真。实验结果表明,与基准模型相比,本文提出的博弈换道策略在不同混合交通量下混合编队完成率维持在97%以上,每组领航CAVs换道时间平均缩短约40%,每组领航CAV换道次数保持较低水平。
中图分类号:
[1] GONG S, DU L. Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles [J]. Transportation Research Part B: Methodological, 2018, 116: 25-61. [2] MAHBUB A M I, LE V A, MALIKOPOULOS A A. A safety-prioritized receding horizon control framework for platoon formation in a mixed traffic environment [J]. Automatica, 2023, 155: 111115. [3] ORKI O, AROGETI S. Control of mixed platoons consist of automated and manual vehicles[C]//2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE) . Graz: IEEE, 2019: 1-6. [4] KATO S, KUNIBE M, YAMAZAKI R, et al. Group formation for cooperative highway merging considering undetected vehicles in mixed traffic[C]//2021 IEEE Vehicular Networking Conference (VNC). Ulm: IEEE, 2021: 68-71. [5] HUA Z, ZHAN J, ZHANG L. Decentralized tube model predictive control for arbitrarily mixed vehicle platoons with HDV uncertainties[C]//2022 41st Chinese Control Conference (CCC) . Hefei: IEEE, 2022: 5429-5434. [6] MAHBUB A M I, MALIKOPOULOS A A. A platoon formation framework in a mixed traffic environment [J]. IEEE Control Systems Letters, 2022, 6: 1370-1375. [7] 王树凤, 王世皓, 王新凯. 基于改进跟驰模型的混合车辆编队研究[J]. 公路, 2023, 68(6): 289-297. WANG S F, WANG S H, WANG X K. Research on hybrid vehicle formation based on improved car-following [J]. Highway, 2023, 68(6): 289-297. [8] YAO Z, MA Y, REN T, et al. Impact of the heterogeneity and platoon size of connected vehicles on the capacity of mixed traffic flow [J]. Applied Mathematical Modelling, 2024, 125: 367-389. [9] 崔冰艳, 李贺, 崔哲, 等. 智能网联汽车换道决策安全性研究综述[J]. 交通信息与安全, 2023, 41(4): 1-13. CUI B Y, LI H, CUI Z, et al. A review of safety studies on lane change decision-makings for connected automated vehicles [J]. Journal of Transport Information and Safety, 2023, 41(4): 1-13. [10] 赵杭, 赵敏, 孙棣华, 等. 面向快速路交通瓶颈的混合交通群体节流控制策略[J]. 交通运输工程学报, 2022, 22(3): 162-173. ZHAO H, ZHAO M, SUN D H, et al. Mixed traffic group throttling control strategy for traffic bottleneck of expressway [J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 162-173. [11] 胡祥旺, 倪颖, 孙剑. 车联网环境下匝道汇入区瓶颈换道优化[J]. 同济大学学报(自然科学版) , 2023, 51(9): 1424-1432. HU X W, NI Y, SUN J. Freeway merging area lane changing advisory optimization under connected vehicles environment [J]. Journal of Tongji University (Natural Science) , 2023, 51(9): 1424-1432. [12] GONG B, XU Z, WEI R, et al. Reinforcement learning-based lane change decision for CAVs in mixed traffic flow under low visibility conditions [J]. Mathematics, 2023, 11(6): 1556. [13] WANG Z, HUANG H, TANG J, et al. A deep reinforcement learning-based approach for autonomous lane-changing velocity control in mixed flow of vehicle group level [J]. Expert Systems with Applications, 2024, 238: 122158. [14] JI A, LEVINSON D. A review of game theory models of lane changing [J]. Transportmetrica A: Transport Science, 2020, 16(3): 1628-1647. [15] 陈华. 基于博弈论的自动驾驶车辆协同换道分析[EB/OL]. 武汉理工大学学报(交通科学与工程版) . (2023-07-04) [2024-03-09]. http://kns.cnki.net/kcms/detail/42.1824.U.20230704.1126.032.html. CHEN H. Cooperative lane changing analysis of autonomous vehicles based on game theory [EB/OL]. Journal of Wuhan University of Technology (Transportation Science & Engineering) . (2023-07-04) [2024-03-09]. http://kns.cnki.net/kcms/detail/42.1824.U.20230704.1126.032.html. [16] ZHENG Y, DING W, RAN B, et al. Coordinated decisions of discretionary lane change between connected and automated vehicles on freeways: a game theory-based lane change strategy [J]. IET Intelligent Transport Systems, 2020, 14(13): 1864-1870. [17] QU D, ZHANG K, SONG H, et al. Analysis and modeling of lane-changing game strategy for autonomous driving vehicles [J]. IEEE Access, 2022, 10: 69531-69542. [18] FU M, LI S, GUO M, et al. Cooperative decision-making of multiple autonomous vehicles in a connected mixed traffic environment: a coalition game-based model [J]. Transportation Research Part C: Emerging Technologies, 2023, 157: 104415. [19] GUERIAU M, DUSPARIC I. Quantifying the impact of connected and autonomous vehicles on traffic efficiency and safety in mixed traffic[C]//2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) . New York: IEEE, 2020: 1-8. [20] SONG L, FAN W (David) , LIU P. Exploring the effects of connected and automated vehicles at fixed and actuated signalized intersections with different market penetration rates [J]. Transportation Planning and Technology, 2021, 44(6): 577-593. [21] YAO Z, WANG Y, LIU B, et al. Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway [J]. Energy, 2021, 230: 120766. [22] YE L, YAMAMOTO T. Modeling connected and autonomous vehicles in heterogeneous traffic flow [J]. Physica A: Statistical Mechanics and its Applications, 2018, 490: 269-277. [23] DING J, PENG H, ZHANG Y, et al. Penetration effect of connected and automated vehicles on cooperative on-ramp merging [J]. IET Intelligent Transport Systems, 2020, 14(1): 56-64. |
[1] | 林思能; . 基于模糊逻辑的瓶颈路段车辆变道决策模拟[J]. 广东工业大学学报, 2002, 19(3): 69-73. |
|