• •
梁家耀1, 张广驰1, 水宜水2, 崔苗1, 李芳3, 熊富4
Liang Jia-yao1, Zhang Guang-chi1, Shui Yi-shui2, Cui Miao1, Li Fang3, Xiong Fu4
摘要: 移动自组织网络(Mobile Ad-hoc Network, MANET)依赖小型通信节点间的信道信息,然而传统的大型信道测量设备难以搭建于MANET小型节点上,同时港口堆场节点间的无线信道呈现较强的时空变化特性,因此在该场景下进行信道测量与建模存在设备便携性与信道模型精确性的双重挑战。针对面向MANET的测量设备小型化问题,本文研究基于通用软件无线电外设(Universal Software Radio Peripheral ,USRP)的便携高精度信道测量方法,测量分析港口堆场内金属结构体对大尺度、小尺度参数的影响;针对场景复杂度高导致射线追踪信道模型精确性不足的问题,创新地提出基于信道测量数据的最优参数搜索方法,通过识别影响射线追踪精度的关键仿真参数并搜索最优值,对信道模型进行迭代校准。结果表明本文提出的建模方法在堆场MANET场景下,由金属结构体引起的多径效应导致平均功率时延谱在多个区间内出现明显聚集现象,适合采用双斜率模型对路径损耗进行拟合。本文提出的最优参数搜索方法显著提高路径损耗和均方根时延扩展仿真值与测量值的吻合度,提升了信道模型的准确性和普适性。
中图分类号:
[1] YAO H Y, XUE T H, WANG D C, et al. Development direction of automated terminal and systematic planning of smart port[C]//2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering. Nanchang: IEEE, 2021: 708-712. [2] YAU K, PENG S H, QADIR J, et al. Towards smart port infrastructures: enhancing port activities using information and communications technology [J]. IEEE Access, 2020, 8: 83387-83404. [3] CHO J, SWAMI A, CHEN I. A survey on trust management for mobile ad hoc networks [J]. IEEE Communications Surveys & Tutorials, 2011, 13(4): 562-583. [4] ABDEL F, FARHAN K, TARAWNEH F, et al. Security challenges and attacks in dynamic mobile ad hoc networks MANETs[C]//2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology. Amman: IEEE, 2019: 28-33. [5] ZHANG G J, CAI X S, FAN W, et al. A USRP-Based channel sounder for UAV communications[C]//14th European Conference on Antennas and Propagation. Copenhagen: IEEE, 2020: 1-4. [6] KHAWAJA W, OZDEMIR O, GUVENC I. UAV air-to-ground channel characterization for millimeter wave systems[C]//2017 IEEE 86th Vehicular Technology Conference. Toronto: IEEE, 2017: 24-27. [7] LI Y, FAN H. Dynamic scheduling and path planning of automated guided vehicles in automatic container terminal [J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(11): 2005-2019. [8] International Telecommunication Union, Recommendations ITU-R P. 1411-12 propagation data and prediction methods for the planning of short-range outdoor radio communication systems and radio local area networks in the frequency range 300 MHz to 100 GHz[R]. Dubai: ITU-R, 2023. [9] 国际移动通信2030(6G) 推进组. 面向6G的信道测量与建模研究报告[R]. 北京: 国际移动通信推进组, 2021. [10] KATULSKI R, SADOWSKI J, STEFANSKI J. Propagation path loss modeling in container terminal environment[C]//2008 IEEE 68th Vehicular Technology Conference. Tokyo: IEEE, 2008: 1-4. [11] AMBROZIAK S, KATULSKI R. An empirical propagation model for mobile radio links in container terminal environment [J]. IEEE Transactions on Vehicular Technology, 2013, 62(9): 4276-4287. [12] FERREIRA M, AMBROZIAK S, CARDOSO F, et al. Fading modeling in maritime container terminal environments [J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9087-9096. [13] ZHANG J H, TANG P, YU L, et al. Channel measurements and models for 6G: current status and future outlook [J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 22-61. [14] 王承祥, 黄杰, 王海明, 等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020, 4(1): 19-32. WANG C X, HUANG J, WANG H M, et al. 6G oriented wireless communication channel characteristics analysis and modeling [J]. Chinese Journal on Internet of Things, 2020, 4(1): 19-32. [15] 李树, 赵雄文, 王琦, 等. 26 GHz室外微蜂窝毫米波信道测量与建模研究[J]. 通信学报, 2017, 38(8): 131-139. LI S, ZHAO X W, WANG Q, et al. Research on 26 GHz mm-wave channel measurements and modeling for outdoor microcells [J]. Journal on Communications, 2017, 38(8): 131-139. [16] DUPLEICH D, MULLER R, LANDMANN M, et al. Multi-band propagation and radio channel characterization in street canyon scenarios for 5G and beyond [J]. IEEE Access, 2019, 7: 160385-160396. [17] CONTI M, GIORDANO S. Mobile ad hoc networking: milestones, challenges, and new research directions [J]. IEEE Communications Magazine, 2014, 52(1): 85-96. [18] QUY V, BAN N, ANH D, et al. An adaptive gateway selection mechanism for MANET-IoT applications in 5G networks [J]. IEEE Sensors Journal, 2023, 23(19): 23704-23712. [19] BHARTI A, ADEOGUN R, CAI X S, et al. Joint modeling of received power, mean delay, and delay spread for wideband radio channels [J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4871-4882. [20] SILVA J, COSTA E. A ray-tracing model for millimeter-wave radio propagation in dense-scatter outdoor environments [J]. IEEE Transactions on Antennas and Propagation, 2021, 69(12): 8618-8629. [21] 何继勇, 富子豪, 赵雄文, 等. 室外微蜂窝毫米波信道测试与射线追踪建模技术[J]. 电力信息与通信技术, 2020, 18(8): 38-46. HE J Y, FU Z H, ZHAO X W, et al. Channel measurement and ray tracing technique for an outdoor microcell at millimeter wave band [J]. Electric Power Information and Communication Technology, 2020, 18(8): 38-46. [22] GOLDSMITH A. Wireless communications[M]. London: Cambridge University Press, 2005: 46-47. [23] WANG F G, WANG X D. Fast and robust modulation classification via Kolmogorov-Smirnov test [J]. IEEE Transactions on Communications, 2010, 58(8): 2324-2332. [24] LI C, YANG K, YU J, et al. V2V radio channel performance based on measurements in ramp scenarios at 5.9 GHz [J]. IEEE Access, 2018, 6: 7503-7514. [25] HE R S, RENAUDIN O, KOLMONEN V, et al. Vehicle-to-vehicle radio channel characterization in cross-road scenarios [J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 5850-5861. |
No related articles found! |
|