广东工业大学学报 ›› 2017, Vol. 34 ›› Issue (03): 15-20.doi: 10.12052/gdutxb.170023
饶东宁1, 温远丽1, 魏来2, 王雅丽3
Rao Dong-ning1, Wen Yuan-li1, Wei lai2, Wang Ya-li3
摘要:
社交网络广泛应用于科技、商业、经济和生物等领域.社交网络一般用中心性指标来对节点的重要性进行量化,常用的中心性指标有节点中心度、接近中心度、介数中心度、三角计数等等.已有的中心度算法通常只考虑单一的度量标准,本文提出加权中心度的思想,结合不同的中心度指标来进行综合考虑.该实验使用社交网络的真实BoardEX数据库,由合作单位香港大学提供,基础数据约600 G,需借助Apache Spark处理大数据的能力来进行集群并行计算.社交网络数据分成美国、英国、欧洲和其他国家4个地区,计算各地区上市公司的首席技术官和首席信息官的个人中心度,从而得到每个地区的平均加权中心度.实验结果表明,通过调整权值,可以使不同区域的加权中心度的差异尽可能小,且由权值大小可知不同中心度度量标准对加权中心度的影响不同.基于真实数据库和处理大数据的集群计算,本文的研究成果更具有现实意义和应用前景.
中图分类号:
[1] LARCKER D F, SO E C, WANG C C. Boardroom centrality and stock returns[J]. Journal of Accounting & Economics, 2013, 55:225-250. |
[1] | 谢光强, 许浩然, 李杨, 陈广福. 基于多智能体强化学习的社交网络舆情增强一致性方法[J]. 广东工业大学学报, 2022, 39(06): 36-43. |
[2] | 刘洪伟, 梁周扬, 左妹华, 陆丹, 范梦婷, 何锐超. 利用消费者浏览行为识别品牌竞争关系研究[J]. 广东工业大学学报, 2019, 36(05): 1-6,13. |
[3] | 黄健文, 朱雪梅, 徐莹, 熊璐, 张伟国. 基于多源大数据的岭南地区老旧小区空间形态量化研究[J]. 广东工业大学学报, 2019, 36(04): 70-79. |
[4] | 白颉, 姚家进, 张茂军, 李桥兴. 金融大数据中条件非相关波动模型的单纯形搜索算法[J]. 广东工业大学学报, 2018, 35(05): 26-30. |
[5] | 彭嘉恩, 邓秀勤, 刘太亨, 刘富春, 李文洲. 融合社交和标签信息的隐语义模型推荐算法[J]. 广东工业大学学报, 2018, 35(04): 45-50. |
[6] | 孙为军, 谢胜利, 汪谷银, 刁俊武, 阮航. 智能工厂工业大数据云平台的设计与实现[J]. 广东工业大学学报, 2018, 35(03): 67-71. |
[7] | 李卫华, 李志猛. 基于大数据运输集团生产运营决策系统的构建及应用[J]. 广东工业大学学报, 2018, 35(03): 113-118. |
[8] | 饶东宁, 王军星, 魏来, 王雅丽. 并行最小割算法及其在金融社交网络中的应用[J]. 广东工业大学学报, 2018, 35(02): 46-50. |
[9] | 谢振东, 吴金成, 李之明, 伍冠桦. 企业大数据能力的构建与培育研究[J]. 广东工业大学学报, 2017, 34(03): 110-114. |
[10] | 刘冬宁, 卢明俊, 黄宝莹, 梁路. 先序约束下的群组角色指派及其优化[J]. 广东工业大学学报, 2017, 34(03): 21-29. |
[11] | 毛莉娜, 李卫华. 用信息流和知网构建大数据语义共享通道研究[J]. 广东工业大学学报, 2017, 34(03): 30-35. |
[12] | 王晓彤. 基于PageRank的微博用户影响力度量[J]. 广东工业大学学报, 2016, 33(03): 49-54. |
[13] | 谭思妮, 陈平华. 蛛网态微博关系网中有影响力用户的识别研究[J]. 广东工业大学学报, 2015, 32(3): 61-66. |
[14] | 杜汉昌, 丁磊, 冯永晋. 面向零售业的大数据商业智能系统研究[J]. 广东工业大学学报, 2014, 31(4): 41-45. |
[15] | 李桥兴, 强保华, 杨春燕. 大数据基元的HBase数据库存储模型与实现[J]. 广东工业大学学报, 2014, 31(3): 8-13. |
|