广东工业大学学报 ›› 2005, Vol. 22 ›› Issue (3): 116-120.

• 综合研究 • 上一篇    下一篇

实反次对称矩阵的对角化

  

  1. 茂名学院数学系 广东茂名525000;
  • 出版日期:2005-07-02 发布日期:2005-07-02
  • 基金资助:

    茂名学院科学基金项目(203101)

Diagonal One of Real Anti-sub-symmetric Matrix

  1. (Department of Mathematics,Maoming College,Maoming 525000,China)
  • Online:2005-07-02 Published:2005-07-02

摘要: 讨论了实反次对称矩阵的次特征值与次特征向量的性质及实反次对称矩阵的对角化问题.得到了如下结论:若A为实反次对称矩阵,则存在正交矩阵P,用P、P的次转置矩阵PST分别右乘和左乘A,即可使之成为一个对角矩阵. 

关键词: 实反次对称矩阵; 次特征值; 次特征向量;

Abstract: The paper has discussed such problims as the properties of sub-eigenvalue and sub-eigenvector of real-anti-sub-symmetric matrix,and its diagonalization.Based on the above,the following result could be approached:If Ais a realanti-sub-symmetric matrix,then there exists a perpendicular matrix P.Multiplied with P and its reversal PSTfrom the right and the left respectively,the matrix will become a diagonalmatrix.

Key words: real anti-sub-symmetric matrix; sub-eigenvalue; sub-eigenvictor;

[1] 曹莉莉.  次厄米特矩阵的次正定性[J]. 重庆师范学院学报(自然科学版). 1996(03)

[1] 戴华编著.矩阵论[M]. 科学出版社, 2001

[2] 骆承钦主编.线性代数[M]. 高等教育出版社, 1999
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!