阴阳离子Ti4+与PO43−共掺杂的富锂锰基正极材料的改性研究

    Modification of Lithium-rich Manganese-based Cathode Materials Based on Anion-cation Co-doping of Ti4+ and PO43−

    • 摘要: 富锂锰基正极材料xLi2MnO3·(1−x)LiTMO2 (TM=Ni,Co或Mn) 具有高比容量和高电压等优势,是极具潜力的锂离子电池正极材料,但存在首次库仑效率低、容量和电压衰减快等问题,这限制了其商业化应用。本文提出通过 Ti4+\mathrmPO_4^3- 阴阳离子共掺杂对富锂锰基氧化物 Li1.2Mn0.6Ni0.2O2进行改性。一方面,Ti4+掺杂可以优化Li+扩散路径,加快 Li+扩散速率,进而提升材料的循环性能和倍率性能;另一方面,\mathrmPO_4^3- 掺杂能改变材料的电子结构,削弱过渡金属−氧(TM—O)键的共价性,抑制晶格氧的不可逆损失,稳定材料结构。表征结果显示,共掺杂使材料晶格发生膨胀,Li+扩散系数增大。电化学测试表明,改性后的材料在 1 C 倍率下循环 400 次后容量保持率可达 89.5%,显著高于未掺杂的原始材料;在 5 C 高倍率下,比容量仍能达到 139.5 mAh·g−1,展现出良好的倍率性能。本文研究为高性能锂离子电池富锂锰基正极材料的改性提供了一种有效的阴阳离子共掺杂策略。

       

      Abstract: Lithium-rich manganese-based cathode materials xLi2MnO3·(1−x) LiTMO2 (TM=Ni,Co or Mn) are highly promising cathode materials for lithium-ion batteries due to their advantages such as high specific capacity and high voltage. However, problems like low initial Coulombic efficiency, rapid capacity and voltage decay limit their commercial applications. In this study, it is proposed to modify the lithium-rich manganese-based oxide Li1.2Mn0.6Ni0.2O2 through the co-doping of anions and cations of Ti4+ and \mathrmPO_4^3- . On the one hand, Ti4+ doping can optimize the Li+ diffusion pathway and accelerate the diffusion rate of Li+, thereby improving the cycling performance and rate performance of the material. On the other hand, \mathrmPO_4^3- doping can change the electronic structure of the material, weaken the covalency of the transition metal-oxygen (TM—O) bond, inhibit the irreversible loss of lattice oxygen, and stabilize the material structure. The characterization results show that the co-doping causes the expansion of the material lattice and increases the diffusion coefficient of Li+. Electrochemical tests indicate that the modified material can achieve a capacity retention rate of 89.5% after 400 cycles at a rate of 1 C, which is significantly higher than that of the undoped original material. At a high rate of 5 C, the specific capacity can still reach 139.5 mAh·g−1, demonstrating excellent rate performance. This study provides an effective strategy of anion-cation co-doping for the modification of lithium-rich manganese-based cathode materials for high-performance lithium-ion batteries.

       

    /

    返回文章
    返回