基于局部融合自适应图卷积与自注意力的交通流预测模型

    A Traffic Flow Prediction Model Based on Local Fusion Adaptive Graph Convolution and Self-attention

    • 摘要: 针对现有深度学习模型在局部时空依赖建模和局部-全局特征融合方面的不足,提出一种新型预测模型LFAGCSA(Local Fusion Adaptive Graph Convolution And Self-Attention) 。该模型通过多层次架构实现了精细化建模:(1) 在数据处理阶段采用时间、特征与空间嵌入技术,将原始数据映射至高维表示空间以增强特征可分离性;(2) 在局部特征提取模块结合了动态自适应图卷积和门控深度卷积前馈网络(Gated Deep Convolutional Feedforward Network, GDFN) 以实现对局部路网结构的自适应建模;(3) 在全局特征捕获模块集成了时间和空间自注意力机制分别建模跨时段和跨区域的全局依赖关系;(4) 在融合输出层将局部细粒度特征与全局时空特征有机结合,最终经全连接层输出多步预测结果。4个真实数据集上的实验结果表明LFAGCSA在各个评估标准下都优于基准模型,实现了对未来交通流量的精确预测。

       

      Abstract: Addressing the deficiencies of existing deep learning models in local spatio-temporal dependency modeling and local-global feature fusion, a new prediction model LFAGCSA (Local Fusion Adaptive Graph Convolution And Self-Attention) is proposed. The model achieves refined modeling through a multilevel architecture: (1) temporal, feature, and spatial embedding techniques are used in the data processing stage to map the original data into a high-dimensional representation space to enhance feature separability; (2) dynamic adaptive graph convolution and gated deep convolutional feedforward network (GDFN) are combined in the local feature extraction module to achieve adaptive modeling of the local road network structure; (3) temporal and spatial self-attention mechanisms are integrated in the global feature capture module to model the global dependencies across time and regions, respectively; and (4) the local fine-grained features are organically combined with the global spatial-temporal features in the fusion output layer, and ultimately outputting the multistep prediction results through the fully connected layer. The experimental results on four real datasets demonstrate that LFAGCSA outperforms the benchmark model in all evaluation criteria, achieving accurate prediction of future traffic flow.

       

    /

    返回文章
    返回