基于多头注意力匹配的小样本知识图谱补全模型

    Few-shot Knowledge Graph Completion Based on Multi-head Attention Matching

    • 摘要: 小样本知识图谱补全(Few-shot knowledge graph completion)旨在利用少量参考信息推断长尾关系中的缺失三元组。现有的FKGC模型在为中心实体聚合邻域信息时无法准确区分邻域中的有用邻居以及噪声邻居,同时在匹配预测阶段中通常只使用实体对相似性进行预测,当参考三元组存在分布不平衡时容易出现预测偏差。为了解决上述问题,本文提出一种基于多头注意力匹配的小样本知识图谱补全模型MhAMM。MhAMM在实体邻域聚合阶段,设计了一种符合FKGC任务稀疏特性的多头注意力机制,能有效提升有用邻居的注意力权重,降低噪声邻居对预测任务的影响,从而提升中心实体的编码质量。在匹配阶段,设计了一个多维匹配网络,该网络不仅包括实体对相似性得分,还包括一个利用全连接神经网络构成的三元组合理性得分,两个得分配合提升匹配质量。在公共数据集上的大量实验表明,多个测试指标MhAMM均得到有效提高,证明了MhAMM模型的有效性和可靠性。

       

      Abstract: Few-shot knowledge graph completion (FKGC) aims to infer missing triples within long-tail relations by leveraging a limited number of reference instances. Existing FKGC models struggle to effectively distinguish informative neighbors from noisy ones during the aggregation of neighborhood information for central entities. Moreover, in the matching and prediction phase, they typically rely solely on entity pair similarity, which often leads to biased predictions when the reference triples are unevenly distributed. To address these challenges, MhAMM, a novel FKGC model is proposed based on multi-head attention matching. In the neighborhood aggregation stage, MhAMM introduces a multi-head attention mechanism tailored to the sparsity characteristics of FKGC tasks, which effectively amplifies the attention weights of informative neighbors while suppressing the influence of noisy ones, thereby improving the encoding quality of central entities. In the matching stage, a multidimensional matching network is designed, which integrates both the entity pair similarity score and a triple plausibility score computed via a fully connected neural network. These two complementary scores jointly enhance the overall matching performance. Extensive experiments on public datasets demonstrate that MhAMM consistently achieves significant improvements across multiple evaluation metrics, verifying the effectiveness and robustness of the proposed model.

       

    /

    返回文章
    返回